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1. Introduction

Conformal field theory (CFT) should provide a natural link between mathematics and

physics: While mathematical definitions of CFT are available [1 – 7], CFT has applications

both in statistical mechanics [8, 9] and in string theory [10 – 13]. Superconformal field

theory (SCFT) can be viewed as a generalization of CFT which in many ways is better

behaved, not least since all consistent string theories yield superconformally invariant field
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theories [14, 15]. Nevertheless, the mutual interactions between the mathematics and the

physics of SCFT remain limited. On the one hand, those approaches which are fully

accepted in mathematics [16, 17, 5, 7] do not succeed to embody all examples that are of

importance in string theory. On the other hand, string theory has not yet matured to the

status of a consistent theory in the mathematical sense of the word.

Geometric methods yield a promising vehicle to bridge this gap: In physics such meth-

ods have a good tradition, and they are built into string theory by construction. In math-

ematics, an area which enjoys great impact from SCFT is algebraic geometry, where e.g.

mirror symmetry tells its own well-known success story [18 – 20]. To use geometric methods

in SCFT a precise understanding of the mechanisms by which SCFT enriches geometry is

desirable. The present work aims to make a contribution in that direction.

There are only very few examples where the encoding of geometry in SCFT is un-

derstood to a satisfactory degree. When restricting to SCFTs associated to Calabi-Yau

d-folds, as seems natural from a string theorist’s point of view,1 then complex tori and their

orbifolds almost exhaust the list of such examples, to which the less conservative geometer

will wish to add lattice and WZW models along with their orbifolds and coset models. At

complex dimension d ≥ 3 this still means that even the degree of our ignorance is hard to

gauge. On the other hand, at complex dimension d = 1 with solely the elliptic curve to

account for in the zoo of Calabi-Yau d-folds, the complete picture is understood.

The complex two-dimensional case resides at the borderline when accounting for igno-

rance: There are only two topological types of Calabi-Yau 2-folds, the complex two-torus

and the K3 surface. Both the moduli spaces of SCFTs associated to complex two-tori and

to K3 surfaces are known to a high degree of plausibility [21 – 23]. For complex two-tori all

associated SCFTs can be constructed explicitly, and their location within the moduli space

along with the translation from geometric to SCFT data is well understood [24, 21]. Within

the 80-dimensional moduli space of SCFTs associated to K3 surfaces, only a finite number

of subvarieties of maximal dimension 16 is known in the sense that the corresponding SCFTs

can be constructed explicitly (by orbifold techniques [25 – 27] or as Gepner models [28, 29]),

and their location within the moduli space along with a translation between geometric and

SCFT data is available [30, 31]. No direct method is known for the construction of SCFTs

associated to smooth K3 surfaces. In this work I provide such a construction for a real four

parameter family of SCFTs associated to smooth quartic K3 surfaces. I combine orbifold

techniques with non-classical dualities thus not giving a new construction of SCFTs but

rather singling out a family of theories which now is well under control from both a super-

conformal field theorist’s and an algebraic geometer’s point of view: The relevant theories

are easy to construct as orbifolds and at the same time have a parametrization in terms

of algebraic equations describing the underlying quartic K3 surfaces. In fact, the latter

geometric interpretation yields all four real parameters as complex structure deformations,

while the complexified Kähler structure remains constant at a natural value.

The tools used here combine a detailed understanding of the moduli space of SCFTs

following Aspinwall and Morrison [23] with orbifold techniques taken from the physics lit-

1Here and in the following I restrict my attention to unitary SCFTs in two dimensions.
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erature and following Dixon, Harvey, Vafa, Witten [25, 26] and Eguchi, Ooguri, Taormina,

Yang [27] as well as their mathematical predecessors, where particularly in the context of

K3 surfaces Nikulin’s work [32] is of importance. These joint forces have already led to

the appropriate description of all orbifold SCFTs obtained from toroidal models within the

moduli space [30, 31], which the present work is built on. As a final ingredient Witten’s

results on the phase structure of the parameter space of supersymmetric gauge theories [33]

comes to aid. The family of SCFTs studied in this work allows a description within each

of these settings.

SCFTs associated to Calabi-Yau 2-folds are comparatively tractable because they enjoy

extended N = (4, 4) supersymmetry beyond the usual N = (2, 2) supersymmetry required

for SCFTs associated to Calabi-Yau d-folds in general. Geometrically this corresponds to

the observation that all Calabi-Yau 2-folds are hyperkähler. Hence many of my techniques

will not generalize to higher dimensions. However, the main result as stated addresses

geometric interpretations of SCFTs on K3 surfaces that are equipped with a complex

structure, a Kähler class, and a B-field. I call these data a “refined geometric interpre-

tation” to distinguish them from the ordinary geometric interpretations of such theories

which amount to fixing a hyperkähler structure, a volume, and a B-field. Additionally

specifying a complex structure within the data of such a theory2 amounts to the choice of

an N = (2, 2) subalgebra within the given N = (4, 4) superconformal algebra (although

vice versa not every choice of an N = (2, 2) superconformal algebra induces the choice of

a complex structure, as we shall see and as was already pointed out in [34]). Viewed as

N = (2, 2) SCFTs the main protagonist of this work, a four-parameter family of SCFTs

associated to a smooth family of quartic K3 surfaces, is understood to a degree which

should allow for applications that may very well generalize to higher dimensions.

Particularly because this family of SCFTs simultaneously allows a description in terms

of representation theory through its orbifold construction and in terms of algebraic geom-

etry in a way which is compatible with linear sigma model constructions, it yields a tailor

made testing ground for modern techniques in SCFT which so far have only been suc-

cessfully applied within one of these pictures or in simpler examples like toroidal SCFTs

or minimal models. Indeed, my main protagonist family of SCFTs can be viewed as a

complex structure deformation of the (2)4 Gepner model in its geometric interpretation on

the Fermat quartic. As such it should lend itself to a study of D-branes combining orbifold

techniques as in [35] with modern techniques from matrix factorization [36 – 44], not only

for (2)4 but for the entire four-parameter family of SCFTs which deforms (2)4. In terms

of more abstract approaches to SCFT it may also be interesting to study this family from

the viewpoint of the chiral de Rham complex [45 – 47]: All relevant vertex algebras should

be accessible explicitly.

Concerning the title of this work let me briefly comment on “very attractive” K3

surfaces. Following Moore [48, 49], I call a K3 surface attractive iff it has maximal Picard

number. If an attractive K3 surface can be given as zero locus of a homogeneous polynomial

2Given a hyperkähler structure, for each compatible choice of complex structure up to normalization

there exists a unique compatible Kähler class.
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of degree 4 in CP3 which decomposes into a sum of two polynomials in two variables each,

then I call it “very attractive”. All “very attractive” K3 surfaces belong to the family

of quartics which I associate SCFTs to in this work, forming a dense subset. However,

not all of the theories associated to “very attractive” K3 surfaces are rational. This work

originally arose from ideas concerning attractiveness in geometry and rationality in SCFT.

In particular, part of the results presented here were already announced in [50], where

however I did not notice that the constructions sketched there for “very attractive” quartics

extend to a smooth family of SCFTs. There, also only three of now four real parameters

α, β, β′, γ were explored. To reduce to the situation of [50], set β′ = β in the present work.

Finally, details and proofs were omitted in [50] which I now provide in full generality. In

fact, the present work aims to be essentially self-contained.

It is organized as follows.

As a warmup, section 2 is devoted to SCFTs associated to Calabi-Yau 1-folds. The ma-

terial is well-established but is presented in a slightly more abstract form than is common,

to facilitate later reference in the higher dimensional case. I give a representation theoretic

definition of these theories and summarize their properties as SCFTs and in relation to the

geometry and the algebraic description of elliptic curves.

Section 3 also begins with the presentation of known material concerning the moduli

space of SCFTs associated to Calabi-Yau 2-folds. Again I give a representation theoretic

definition of such theories, and I summarize the current state of knowledge concerning their

moduli space and its relation to geometric data. Particularly the notion of refined geometric

interpretations is discussed and compared to the generalized K3 structures of [51, 34].

Moreover, two families of SCFTs are introduced, one associated to real four-tori and one

to K3 surfaces, yielding the main protagonists of this work. Both as a preparation for the

main result and as an example for the general techniques discussed before, two distinct

refined geometric interpretations are worked out for each of these families.

Section 4 is devoted to the formulation of the main result of this work and its discussion:

The family of SCFTs associated to K3 introduced previously allows a refined geometric

interpretation which associates it to a family of smooth quartic K3 surfaces, given in terms

of explicit algebraic equations. I provide a first step in the proof of this claim and motivate

it in terms of an extension of a construction by Inose [52] to SCFTs: Inose’s results concern

complex structures of K3 surfaces only, while on the level of SCFTs we deal with pairs of

complex structures and complexified Kähler structures. Motivated by this interpretation

of the main result on a purely geometric level I deduce properties of the natural Kähler

class of our quartic K3 surfaces in CP3, which descends from the class of the Fubini-Study

metric on CP3: The induced Kähler class on a Z2-orbifold of such quartics is closely and

explicitly related to a Kähler class which is induced by a Kummer construction. This result

makes the underlying Kähler-Einstein metrics directly accessible to numerical approaches

developed recently [53] and may be interesting in its own right. I present a simple proof

which does not use results from SCFT.

The following section 5 contains the remaining steps in the proof of the main result.

This largely amounts to understanding the particular model (2)4 within the family of

SCFTs discussed here, along with its deformations.
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I conclude with a discussion in section 6, and four appendices contain details about

the geometry of elliptic curves, about minimal models, and about Gepner models, which

are used in the main text.

2. Warmup: SCFTs associated to Calabi-Yau 1-folds

Before turning to the main topic of this work, I discuss SCFTs associated to Calabi-

Yau 1-folds. There is only one topological type of Calabi-Yau 1-folds, namely the elliptic

curve, and SCFTs associated to elliptic curves are well understood: These theories allow

an abstract mathematical definition in terms of representation theory, all such theories

can be constructed explicitly, and their moduli space is known, including the translation

from conformal field theoretic into geometric data. The moduli space and the notion of

geometric interpretation for such theories bear some resemblance to the corresponding

notions for Calabi-Yau 2-folds, which play center stage in this work. For this reason and

also since SCFTs associated to elliptic curves are building blocks of the main protagonists

of this work it is worthwhile to describe these theories in some detail, even though the

material is standard and can be found in various textbooks, see also [54].

Section 2.1 is devoted to the mathematical definition of SCFTs on elliptic curves and

the description of these theories. While my definition is not completely standard, the

expert will notice that it yields precisely those theories known as toroidal SCFTs with

central charge c = 3 = c in the physics literature. My definition has the advantage that

it can be completely paralleled when it comes to defining SCFTs associated to Calabi-Yau

2-folds. Since some background knowledge in SCFT is assumed in this section, the non-

expert may choose to skip directly to section 2.2 and accept the claims made there as given

facts. That section is devoted to the discussion of the moduli space of SCFTs associated

to elliptic curves, including the notion or mirror symmetry and its cousins. In section 2.3

an algebraic description for elliptic curves is introduced which is needed later and which

differs from the standard Weierstraß form.

2.1 Definition and properties

I use the following definition for SCFTs associated to elliptic curves:

Definition 2.1

An N = (2, 2) SCFT E with3 central charges c = c = 3 is called toroidal or associated

to an elliptic curve iff the following holds:

The pre-Hilbert space H of E decomposes into H = NS ⊕ R, where the Neveu-Schwarz

sector NS and the Ramond sector R are isomorphic under the spectral flow. Moreover, in

NS all charges with respect to the u(1) currents J, J of the superconformal algebras on the

left and right are integral, where the standard normalization

J(z)J(w) ∼ c/3

(z − w)2
+ O(1), J(z)J(w) ∼ c/3

(z − w)2
+ O(1). (2.1)

is used.

3Without further mention SCFTs in this work always refer to unitary CFTs in two dimensions.
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This definition implies that every SCFT E associated to an elliptic curve contains the

operators of two-fold spectral flow as fermionic fields ψ± on the left and ψ∓ on the right, and

that both the holomorphic and the anti-holomorphic W-algebras contain a u(1)3 current

algebra: On each side there is one u(1) current J, J belonging to the superconformal

algebra, and two further purely bosonic currents, the superpartners j±, ± of the ψ±, ψ±.

It is not hard to see that ψ±, ψ± give an ordinary Dirac fermion, and4 J = i :ψ−ψ+:.

Moreover, E is a tensor product of a bosonic toroidal CFT at c = c = 2 (most conveniently

defined as CFT with central charges c = c = 2 such that both holomorphic and anti-

holomorphic W-algebras contain a u(1)2 current algebra) with the fermionic theory at c =

c = 1 given by the Dirac fermion. We denote the real and imaginary parts of
√

2j±,
√

2±
by j1, j2, 1, 2, normalized such that

jk(z)jl(w) ∼ δkl

(z − w)2
+ O(1), k(z)l(w) ∼ δkl

(z − w)2
+ O(1). (2.2)

The left-handed Virasoro field of E hence is

T =
1

2
:j1j1: +

1

2
:j2j2: +

1

2
:∂ψ+ψ−: +

1

2
:∂ψ−ψ+: . (2.3)

A toroidal theory E with central charges c = c = 3 is uniquely determined by its charge

lattice Γ ⊂ R2,2 with respect to (j1, j2; 1, 2). Here R2 carries the standard Euclidean

scalar product, and

for (p; p), (p′; p′) ∈ R2,2 with p, p, p′, p′ ∈ R2, (p; p) · (p′; p′) = p · p′ − p · p′.

Each (p; p) ∈ Γ labels a vertex operator of charge (p; p) with respect to (j1, j2; 1, 2),

which by (2.3) has conformal weights (p2

2 , p2

2 ). These vertex operators create the ground

states with respect to the generic W-algebras of toroidal SCFTs, which are generated by

the superconformal algebras together with the u(1) currents jk, k. The total partition

function of such a theory and its Neveu-Schwarz part are given by

Z(τ ′, z) = trH

[
1

2

(
1 + (−1)F

)
yJ0yJ0qL0− 1

8 qL0− 1
8

]

=
∑

(p;p)∈Γ

q
p2

2 q
p2

2

|η(τ ′)|2
· 1

2

4∑

i=1

∣∣∣∣
ϑi(τ

′, z)

η(τ ′)

∣∣∣∣
2

, (−1)F = eiπ(J0−J0),

ZNS(τ ′, z) = trNS

[
yJ0yJ0qL0− 1

8 qL0− 1
8

]
=

∑

(p;p)∈Γ

q
p2

2 q
p2

2

|η(τ ′)|2
·

∣∣∣∣
ϑ3(τ

′, z)

η(τ ′)

∣∣∣∣
2

,

(2.4)

where τ ′ ∈ H = {ζ ∈ C | =(ζ) > 0}, z ∈ C, q = e2πiτ ′
, y = e2πiz, η and ϑi denote the

Dedekind eta and the Jacobi theta functions, and J0, J0, L0, L0 the respective zero modes

of u(1) currents and the Virasoro fields in the superconformal algebra.

4Here and in the following, statements made for holomorphic (left-handed) fields hold analogously for

anti-holomorphic (right-handed) fields, though I will not always mention this explicitly.
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For toroidal theories associated to elliptic curves the charge lattice Γ can always be

expressed in terms of two moduli τ, ρ ∈ H as follows:

Γτ,ρ =

{
1√
2

(λ∗ − Bλ + λ;λ∗ − Bλ − λ)

∣∣∣∣ λ∗ =
2∑

k=1

mkλ
∗
k, λ =

2∑

k=1

nkλk, nk, mk ∈ Z

}
,

λ1 :=

√
=(ρ)

=(τ)

(
1

0

)
, λ2 :=

√
=(ρ)

=(τ)

(<(τ)

=(τ)

)
,

λ∗
1 :=

1√
=(ρ)=(τ)

( =(τ)

−<(τ)

)
, λ∗

2 :=
1√

=(ρ)=(τ)

(
0

1

)
, B :=

<(ρ)

=(ρ)

(
0 −1

1 0

)
.

(2.5)

2.2 Moduli space and dualities

Since by the above every SCFT E associated to an elliptic curve is uniquely determined by

its charge lattice Γτ,ρ, which in turn can be given in terms of a pair τ, ρ ∈ H, a parameter

space of all such theories is H × H. In fact, inspection of Γτ,ρ in (2.5) shows (see [21])

Proposition 2.2

The moduli space of SCFTs associated to elliptic curves according to Definition 2.1 is

ME =
(
PSL2(Z)\H × PSL2(Z)\H

)
/Z2

2,

where every pair τ, ρ ∈ H determines the unique such theory with charge lattice Γτ,ρ given

in (2.5), PSL2(Z) acts by Möbius transforms on H, and Z2
2 is generated by U(τ, ρ) := (ρ, τ)

and V (τ, ρ) := (−τ ,−ρ).

Though U, V induce non-trivial actions on Γτ,ρ, these agree with the actions induced by

reparametrizations (j1, j2; 1, 2) 7→ (j1, j2;−1, 2) and (j1, j2; 1, 2) 7→ (−j1, j2;−1, 2),

yielding the associated SCFTs equivalent.

Traditionally, the parameter τ ∈ H of a SCFT E associated to an elliptic curve with

charge lattice Γτ,ρ is interpreted as the period of an elliptic curve Eτ fixing its complex

structure, while ρ ∈ H determines a complexified Kähler structure on Eτ : =(ρ) >

0 gives the volume of Eτ , thereby specifying a Kähler structure because H1,1(Eτ , C) ∩
H2(Eτ , R) = H2(Eτ , R) ∼= R and in accord with det (λ1, λ2) = =(ρ) from (2.5), while

<(ρ) specifies the so-called B-field B = <(ρ) · λ∗
1 ∧ λ∗

2 ∈ H2(Eτ , R) ∼= R. This justifies

the terminology in Definition 2.1, and the pair (τ, ρ) ∈ H × H specifying a toroidal SCFT

is referred to as geometric interpretation of the theory. Note that U(τ, ρ) = (ρ, τ)

exchanges complex and complexified Kähler structures of a given geometric interpretation

and thus yields the simplest form of mirror symmetry, while V (τ, ρ) = (−τ ,−ρ) is

induced by an orientation change of the “target space” Eτ .

2.3 An algebraic description

Instead of characterizing an elliptic curve Eτ by its period τ ∈ H it is often more desirable

to work with explicit equations. The standard description gives an elliptic curve (with

inflection point) in CP2 in terms of its Weierstraß form

with a, b ∈ C : y2t = x3 − 27axt2 − 54bt3 for (x, y, t) ∈ CP2. (2.6)

– 7 –
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Figure 1: Fundamental domain for κ ∈ C in y4
1 + 2κy2

1y
2
2 + y4

2 .

The non-degenerate elliptic curves, which I shall restrict to in the following, are the ones

which obey a3 6= b2. The period τ ∈ H of (2.6) is obtained by means of the j-function

j: H → C, the unique modular invariant biholomorphic function with q-expansion

j(τ) = q−1 + 744 + 196884q + · · · , q := e2πiτ .

For the curve (2.6) with period τ ∈ H one has

j(τ) =
1728a3

a3 − b2
.

Both for the function j and its inverse rapidly convergent algorithms are available, see

e.g. [55, section VI.9].

In the application below, the elliptic curves are given in weighted projective space,

Ef : y2
0 = f(y1, y2) in CP2,1,1

with f a non-degenerate homogeneous polynomial of degree 4, i.e. such that no two roots

of f agree. To arrive from the standard form (2.6) at such a description one maps the four

two-torsion points to the four solutions (0, y1, y2) ∈ CP2,1,1 of f(y1, y2) = 0. Without loss

of generality f has the form

f(y1, y2) = y4
1 + 2κy2

1y
2
2 + y4

2 , κ ∈ C with =(κ) ≥ 0, |κ ± 1| ≤ 2, (2.7)

where κ ∼ −κ if |κ±1| = 2, κ ∼ −κ if κ ∈ R, and κ = ±1 gives a degenerate elliptic curve.

See figure 1 to picture the fundamental domain for κ, and see A for details. Altogether the

maps κ = κ(τ) and τ = τ(κ) which relate the algebraic description (2.7) of elliptic curves

in CP2,1,1 to their periods τ ∈ H amount to combining the j-function or its inverse with

solving algebraic equations. Hence κ = κ(τ) and τ = τ(κ) can be determined numerically.

In some cases the result is known explicitly, e.g.

τ = i ∈ H ←→ Ef0 : y2
0 = y4

1 + y4
2 in CP2,1,1, (2.8)

see also A.
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3. SCFTs associated to Calabi-Yau 2-folds

In this section I set the stage for the formulation of the main Result 4.1 of this work.

Namely, I discuss SCFTs associated to Calabi-Yau 2-folds. These theories are defined

purely within representation theory, paralleling Definition 2.1 of SCFTs associated to el-

liptic curves. This definition is given in section 3.1 along with the discussion of the moduli

space of SCFTs associated to Calabi-Yau 2-folds and their (refined) geometric interpreta-

tions, essentially summarizing the results of [23]. Section 3.2 is devoted to the introduction

of the two families of SCFTs associated to Calabi-Yau 2-folds which feature in the main

Result 4.1: One real four-parameter family of SCFTs associated to real four-tori and one

associated to K3 surfaces, where the latter is obtained from the former by an orbifold

construction. For later convenience a pair of “dual” refined geometric interpretations for

each member of both families is provided.

3.1 Definition and moduli space

To formally define SCFTs associated to Calabi-Yau 2-folds one can straightforwardly par-

allel Definition 2.1

Definition 3.1

An N = (4, 4) SCFT5 C with central charges c = c = 6 is called associated to a

Calabi-Yau 2-fold iff the following holds:

The pre-Hilbert space H of C decomposes into H = NS ⊕ R, where the Neveu-Schwarz

sector NS and the Ramond sector R are isomorphic under the spectral flow. Moreover, in

NS all charges with respect to the u(1) currents of the superconformal algebras on the left

and right with standard normalizations (2.1) are integral.

Every N = (2, 2) SCFT with central charges c = c = 6 which obeys the additional as-

sumptions on the spectral flow and the u(1) charges of Definition 3.1 automatically enjoys

N = (4, 4) supersymmetry of the type assumed in the definition, see e.g. [27]: The as-

sumptions ensure that the operators of two-fold left and right handed spectral flows are

operators of these SCFTs; one checks that at central charges c = c = 6 these operators

furnish additional currents which enhance the left and the right u(1) subalgebras of the

N = (2, 2) superconformal algebra to an su(2) at level 1 each, thus enhancing N = (2, 2)

supersymmetry to N = (4, 4). I nevertheless include N = (4, 4) supersymmetry in the

assumptions of Definition 3.1, because these theories shall be viewed as N = (4, 4) SCFTs

without an a priori choice of an N = (2, 2) subalgebra of the N = (4, 4) superconformal

algebra. The condition on u(1) charges makes sense without such a choice, because all

Cartan tori u(1) ⊂ su(2) are conjugate such that the spectrum of u(1) charges does not

depend on such a choice.

While definitions analogous to 2.1 and 3.1 make sense at central charges c = c = 3D

for arbitrary D ∈ N, the cases D ∈ {1, 2} are special in that for them the moduli spaces of

SCFTs associated to Calabi-Yau D-folds are known and are expected to decompose into a

5There are various extended N = 4 superconformal algebras, see [56]; the one needed here is the one

which contains a single su(2) Kac-Moody algebra at level 1.
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finite number of connected components. For D = 1 we have seen this in section 2, while

for D = 2 the statement is closely linked to

Lemma 3.2

If C is a SCFT associated to a Calabi-Yau 2-fold according to Definition 3.1, consider its

conformal field theoretic elliptic genus

Z(τ ′, z) := trR

[
(−1)F yJ0qL0− 1

4 qL0− 1
4

]
, (−1)F = eiπ(J0−J0),

with τ ′ ∈ H, z ∈ C, q = e2πiτ ′
, y = e2πiz, R denoting the Ramond sector as in Definition

3.1, and J0, J0, L0, L0 the respective zero modes of u(1) currents and the Virasoro fields

in the superconformal algebra. Then either Z(τ ′, z) ≡ 0 or

Z(τ ′, z) =
2

η6(τ ′)

(
ϑ2

2(τ
′, z) · ϑ2

3(τ
′, 0) · ϑ2

4(τ
′, 0)

+ϑ2
3(τ

′, z) · ϑ2
4(τ

′, 0) · ϑ2
2(τ

′, 0) + ϑ2
4(τ

′, z) · ϑ2
2(τ

′, 0) · ϑ2
3(τ

′, 0)
)
,

where η, ϑl denote the Dedekind eta and the Jacobi theta functions. In other words, the

conformal field theoretic elliptic genus Z agrees with the geometric elliptic genus of a com-

plex two-torus or a K3 surface, i.e. of one of the two topologically distinct Calabi-Yau

2-folds.

A proof of this Lemma follows from the modular properties of the conformal field theoretic

elliptic genus, which for SCFTs associated to Calabi-Yau 2-folds is a theta function of de-

gree n = 2 and characteristic (0, 0;−4πin,−2πiτ). The proof can be found in [57] and also

in [58]. Lemma 3.2 allows us to formally assign the label “torus” or “K3” to each SCFT

associated to a Calabi-Yau 2-fold by means of the conformal field theoretic elliptic genus:

Definition 3.3

A SCFT associated to a Calabi-Yau 2-fold is said to be a SCFT on a real four-torus

iff its conformal field theoretic elliptic genus vanishes. Otherwise, it is said to be a SCFT

on a K3 surface.

While using [24, 21] one can show that the SCFTs associated to real four-tori form a

connected component of the moduli space of all SCFTs associated to Calabi-Yau 2-folds,

a proof of the analogous statement for SCFTs associated to K3 is not known. In physics,

one largely works under the assumption that indeed the space of SCFTs associated to

Calabi-Yau 2-folds has only two connected components, and no counter example to this

assumption is known. Below I will solely work with smooth families of such SCFTs such

that the possible existence of further components of the moduli space is not relevant to the

present work.

Essentially due to the extended N = (4, 4) supersymmetry of SCFTs associated to

Calabi-Yau 2-folds it is possible to determine the form of each connected component of

their moduli space explicitly. Here I restrict myself to stating the result; for more details

see e.g. [24, 21, 22, 59, 23, 58, 30, 31]:
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Theorem 3.4 [24, 21, 22, 59, 23, 30]

Every connected component of the moduli space of SCFTs associated to Calabi-Yau 2-folds

is either of the form Mtori = M0 or MK3 = M16 with6

Mδ ∼= O+(4, 4 + δ; Z)\O+(4, 4 + δ; R)/SO(4) × O(4 + δ), δ ∈ {0, 16}.

There is only one connected component of the moduli space of type M0 and at least one

such component of type M16. Here, M16 includes points where the SCFT description is

expected to break down. Namely, points x in the Grassmannian M̃δ of positive definite

oriented four-planes in R4,4+δ,

M̃δ = O+(4, 4 + δ; R)/SO(4) × O(4 + δ),

are described by their relative position with respect to the (unique) even unimodular lattice

Z4,4+δ ⊂ R4,4+δ. Then x ∈ M̃K3 is expected to correspond to an ill-defined SCFT iff

x⊥ ⊂ R4,4+δ contains roots, i.e. iff there exists an e ∈ x⊥ ∩ Z4,4+δ with 〈e, e〉 = −2.

Apart from the vocabulary — using Calabi-Yau 2-folds, real four-tori, and K3 surfaces —

the discussion, so far, has not made a connection to geometry. However, Theorem 3.4 is in

accord with the expectation from string theory that every SCFT associated to a Calabi-Yau

2-fold should allow for a non-linear sigma model description on some Calabi-Yau 2-fold.

Indeed, Mtori and MK3 agree with the moduli spaces of N = (4, 4) superconformal non-

linear sigma models on real four-tori and K3 surfaces, respectively, and thanks to the high

amount of supersymmetry the geometry of these moduli spaces is not expected to receive

quantum corrections. The key to understanding this agreement can be found in [23], and

it amounts to the observation that the Grassmannians in Theorem 3.4 can be modelled on

the even cohomology of the respective Calabi-Yau 2-folds:

Heven(Y, R) ∼= R4,4+δ for Y =

{
A, a real four-torus, δ = 0,

X, a K3 surface, δ = 16.

Here and in the following A, X, Y denote the diffeomorphism types of the respective Calabi-

Yau 2-folds as real four-manifolds, with all additional structure to be introduced later.

Moreover, on cohomology we use the natural scalar product 〈·, ·〉 induced by the intersection

form:

∀α, β ∈ H∗(Y, R) : 〈α, β〉 =

∫

Y
α ∧ β.

With this key in hands one can interpret the identification of the spaces Mδ of Theorem 3.4

with spaces of superconformal non-linear sigma model data on Calabi-Yau 2-folds as a

generalization of the following Torelli theorem for Calabi-Yau 2-folds:

Theorem 3.5 [60 – 64]

Complex structures on a Calabi-Yau 2-fold Y are in 1: 1 correspondence with positive def-

inite oriented two-planes Ω ⊂ H2(Y, R) ∼= R3,3+δ with δ = 0 for a real four-torus Y = A

6For M
16, a mathematical proof is not known which excludes the possibility that the actual moduli

space is a quotient of the one given here. However, as argued in [23], any such non-trivial quotient carries

a non-Hausdorff topology, in contradiction to expectations from physics.
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and δ = 16 for a K3 surface Y = X.

Any orthonormal basis of a positive definite oriented two-plane Ω ⊂ H2(Y, R) can be

interpreted as giving the real and the imaginary part of a holomorphic volume form

Ω̃ ∈ H2,0(Y, C), thus explaining how Ω can encode a complex structure. In other words,

Ω⊗C ⊂ H2(Y, C) is the orthogonal complement of the kernel of the period map. Any two-

plane Ω ⊂ H2(Y, R) is specified by its relative position with respect to the even unimod-

ular lattice H2(Y, Z) ⊂ H2(Y, R). Appropriately decomposing the four-planes featuring

Theorem 3.4 into pairs of perpendicular two-planes now yields so-called refined geometric

interpretations for them:

Definition 3.6

Given a Calabi-Yau 2-fold Y , let x ⊂ Heven(Y, R) denote a positive definite oriented four-

plane which according to Theorem 3.4 specifies a SCFT on Y . A refined geometric

interpretation of this SCFT is a choice of null vectors υ0, υ ∈ Heven(Y, Z) along with

a decomposition of x into two perpendicular oriented two-planes, x = Ω ⊥ f, such that

(1) 〈υ0, υ0〉 = 〈υ, υ〉 = 0, 〈υ0, υ〉 = 1, and (2) Ω ⊥ υ0, υ.

Following [23], a refined geometric interpretation of a SCFT x on Y indeed assigns geometric

data to x, in fact precisely the data needed to specify a superconformal non-linear sigma

model on the complex Calabi-Yau 2-fold Y :

Lemma/Definition 3.7

For a Calabi-Yau 2-fold Y , let x ⊂ Heven(Y, R) denote a positive definite oriented four-plane

with refined geometric interpretation υ0, υ ∈ Heven(Y, Z), x = Ω ⊥ f as in Definition 3.6.

Then υ0, υ are naturally interpreted as generators of H0(Y, Z) and H4(Y, Z), respectively,

and one finds ω, B ∈ Heven(Y, R) and V ∈ R such that

f = spanR

(
ω − 〈ω,B〉υ, ξ4 = υ0 + B +

(
V − 1

2
〈B,B〉

)
υ

)

with ω, B ∈ H2(Y, R) := Heven(Y, R) ∩ (υ0)⊥ ∩ (υ)⊥, V ∈ R+, 〈ω, ω〉 ∈ R+.

While for every refined geometric interpretation B and V are uniquely defined, ω is unique

only up to scaling. This allows to read from a refined geometric interpretation the data

(Ω, ω, V,B) with natural interpretations in terms of a complex structure Ω on Y , a Kähler

class ω on Y up to scaling, a volume V ∈ R+, and a B-field B ∈ H2(Y, R).

By abuse of language I also call the data (Ω, ω, V,B) a refined geometric inter-

pretation of a given SCFT x ∈ M̃δ. f or equivalently the data (ω, V,B) will be referred

to as complexified Kähler structure, and the class of ω will be called normalized

Kähler class.

The statement of the Lemma is a consequence of the Torelli Theorem 3.5 together with a

bit of linear algebra using 〈ω −〈ω,B〉υ, ξ4〉 = 0 and 〈ξ4, ξ4〉 = 2V . For toroidal SCFTs one

checks by direct calculation that the map from non-linear sigma model data (Ω, ω, V,B)
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to Mtori encoded in Lemma/Definition 3.7 preserves the respective natural metrics, given

by the Zamolodchikov metric on M̃tori. In [23] the same is claimed for MK3.

Recall the comments made after Definition 3.1 concerning N = (4, 4) versus N = (2, 2)

supersymmetry for SCFTs associated to Calabi-Yau 2-folds Y . According to Theorem 3.4

every positive definite oriented four-plane x ⊂ Heven(Y, R) specifies an N = (4, 4) SCFT

with central charges c = c = 6 without particular choice of an N = (2, 2) subalgebra in

the N = (4, 4) superconformal algebra. There is an S2/Z2 of such subalgebras both on

the left and on the right, specified by the choice of an unoriented Cartan torus u(1) ⊂
su(2) within the N = 4 superconformal algebra on each side. For later convenience, see

(3.1), my conventions differ from [23, 34] in that I do not impose an orientation on u(1),

hence the division of S2 by Z2. The connected components of the space of all N = (2, 2)

superconformal field theories associated to Calabi-Yau 2-folds then fiber over our spaces

Mδ with fibers S2 × S2/Z2
2.

In [30, section 1] we have given an interpretation of the four-plane x in terms of the

action of the su(2)⊕ su(2) = so(4) subalgebra of the N = (4, 4) superconformal algebra on

the space of massless fields in the respective SCFT. Since

O+(2, 2; Z)\O+(2, 2; R)/SO(2) × O(2) ∼= (PSL2(Z)\H × PSL2(Z)\H) / Z2
2, (3.1)

from this discussion one finds that the choice of an N = (2, 2) subalgebra in the N =

(4, 4) superconformal algebra amounts to a choice of decomposition x = Ω ⊥ f of x

into two perpendicular two-planes, up to a choice of their ordering and their individual

orientations. In other words, generators of Z2
2 in (3.1) act by interchanging Ω and f and

by simultaneously reversing their orientations, respectively. A decomposition x = Ω ⊥ f

into oriented two-planes with choice of ordering amounts to a choice of an N = (2, 2)

subalgebra of the N = (4, 4) superconformal algebra together with generators of its u(1)⊕
u(1) subalgebra. In [34] the resulting ordered pairs (Ω, f) are called generalized K3

structures, and the picture from [23] drawn above is confirmed and identified with

Hitchin’s notion of generalized Calabi-Yau manifolds [51] in the case of Calabi-Yau 2-folds.

When working with a fixed grading Heven(Y, R) = H0(Y, R) ⊕ H2(Y, R) ⊕ H4(Y, R)

which amounts to the choice of two null vectors υ0, υ ∈ Heven(Y, Z) as generators of

H0(Y, Z) and H4(Y, Z) as in Definition 3.6 and subject to condition (1) in that definition,

then not every ordered pair (Ω, f) of perpendicular oriented positive definite two-planes

in Heven(Y, R) gives a refined geometric interpretation in terms of the data of a confor-

mal non-linear sigma model: Condition (2) of Definition 3.6 which ensures Ω ⊂ H2(Y, R)

is crucial to that effect. In particular, as observed in [34], one could say that not every

N = (2, 2) SCFT associated to a Calabi-Yau 2-fold arises from a conformal non-linear

sigma model construction on a (complex) Calabi-Yau 2-fold like this. However, if we tem-

porarily assume that there is just one connected component of type MK3 in the moduli

space of N = (4, 4) SCFTs associated to Calabi-Yau 2-folds, then each N = (4, 4) SCFT

arises from a non-linear sigma model construction: The relevant geometric data only in-

volve the choice of a hyperkähler structure, a volume, and a B-field, not the explicit choice

of a complex structure. This serves as justification for my Definition 3.1 which insists on

extended N = (4, 4) supersymmetry. Huybrechts’ observation amounts to the fact that in
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such a non-linear sigma model construction, not every choice of N = (2, 2) subalgebra can

be interpreted as the choice of a complex structure on the Calabi-Yau 2-fold. However,

given x = Ω ⊥ f, pairs υ0, υ ∈ Heven(Y, Z) with (1) and (2) in Definition 3.6 can always

be found. In other words, as long as the grading of Heven(Y, R) is not fixed a priori, indeed

every pair (Ω, f) specifying an N = (2, 2) SCFT can be interpreted in terms of non-linear

sigma model data.

3.2 The main protagonists

Recall the definition of SCFTs associated to elliptic curves, Definition 2.1. One finds that

the (fermionic) tensor product of any two such theories is a SCFT associated to a real four-

torus according to Definition 3.3. Moreover, all known geometric orbifold constructions of

K3 surfaces from real four-tori can be extended to constructions in SCFT, producing

SCFTs associated to K3 as orbifolds of SCFTs associated to four-tori, see e.g. [27]. As

main protagonists of the present work I introduce two families of SCFTs associated to

Calabi-Yau 2-folds in this section. The first, denoted Tα,β,β′,γ , is associated to a family

of real four-tori, and each theory is obtained as a tensor product of theories associated to

elliptic curves. The second, denoted Cα,β,β′,γ , is associated to a family of K3 surfaces, and

each theory is obtained as an orbifold of the corresponding Tα,β,β′,γ .

Definition 3.8

Denote by Tα,β,β′,γ with

α, β, β′, γ ∈ R such that α, γ > 0 and ∆ := β2 − 4αγ < 0

the (fermionic) tensor product of the two SCFTs associated to elliptic curves with moduli

(τk, ρk) given by

τ1 = τ2 = i, ρ1 =
−β +

√
∆

2α
, ρ2 =

−β′ +
√

∆

2
.

By the discussion in section 2.2 the factor theories of Tα,β,β′,γ are SCFTs on elliptic curves

with square fundamental cells (τ1 = τ2 = i), with radii R1, R2 such that R2
1 =

√
−∆
2α , R2

2 =√
−∆
2 , and with B-fields given by the − β

2α and the −β′

2 -fold of a generator of H2(Eτk
, Z),

respectively. Hence Tα,β,β′,γ is a toroidal SCFT with refined geometric interpretation on a

real four-torus Aα,β,γ with the flat metric and complex and Kähler structure induced by

Aα,β,γ = R4/Λα,β,γ , Λα,β,γ = R1Z2 ⊕ R2Z
2, R2

1 =

√
−∆

2α
, R2

2 =

√
−∆

2
, (3.2)

z1 = x1 + ix2, z2 = x3 + ix4, ωα ∼ dx1 ∧ dx2 + α dx3 ∧ dx4

with respect to standard Cartesian coordinates x1, . . . , x4 on R4. I use the standard basis

e1, . . . , e4 of R4 to introduce generators λ1 = R1e1, λ2 = R1e2, λ3 = R2e3, λ4 = R2e4 of

Λα,β,γ and view the vectors forming the dual basis λ∗
1, . . . , λ

∗
4 as generators of H1(A, Z).

Hence H2(A, Z) is generated by

υ0
1 = λ∗

1 ∧ λ∗
3, υ1 = λ∗

4 ∧ λ∗
2, υ0

2 = λ∗
2 ∧ λ∗

3, υ2 = λ∗
1 ∧ λ∗

4, υ0
3 = λ∗

1 ∧ λ∗
2, υ3 = λ∗

3 ∧ λ∗
4, (3.3)
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where the υ0
k, υl obey 〈υ0

k, υ
0
l 〉 = 0, 〈υk, υl〉 = 0, 〈υ0

k, υl〉 = δkl. For later convenience let me

give the location of each Tα,β,β′,γ in the moduli space Mtori of SCFTs associated to real

four-tori, along with two refined geometric interpretations:

Proposition 3.9

The SCFT Tα,β,β′,γ of Definition 3.8 has a refined geometric interpretation (Ω0
A, ωA

α , V A
α,β,γ ,

BA
α,β,β′) given by

Ω0
A = spanR(υ0

1 + υ1, υ
0
2 + υ2),

ωA
α = υ0

3 + αυ3, V A
α,β,γ = R2

1R
2
2 = γ − β2

4α
, BA

α,β,β′ = − β

2α
υ0

3 − β′

2
υ3.

Within Mtori this theory is given by the four-plane xA
α,β,β′,γ ⊂ Heven(A, R) with

xA
α,β,β′,γ = spanR

(
ξ1, ξ2, ξ3, ξ̃4

)
,ξ1 = υ0

1 + υ1, ξ2 = υ0
2 + υ2,

ξ3 = υ0
3 + αυ3 +

β + β′

2
υ4, ξ̃4 = υ0

4 +
β − β′

2
υ3 + γυ4,

where υ0
4 , υ4 denote generators of H0(A, Z) and H4(A, Z), respectively.

Tα,β,β′,γ has a “mirror dual” refined geometric interpretation (ΩA
α,β,β′,γ , ωA, VA, BA)

with complex structure given by the product of two elliptic curves Eρ1 × Eρ2 at the moduli

ρ1, ρ2 from Definition 3.8, with normalized Kähler form ωA = − i
2(dz1 ∧ dz1 + dz2 ∧ dz2)

with respect to complex coordinates zj of Eρj
such that − i

2dzj ∧ dzj generates H2(Eρj
, Z),

and with volume VA = 1 and B-field BA = 0.

Proof:

That Tα,β,β′,γ has refined geometric interpretation (Ω0
A, ωA

α , V A
α,β,γ , BA

α,β,β′) follows directly

from the construction of Tα,β,β′,γ and the given geometric interpretation of its factor theo-

ries. From Definition 3.7 we see that xA
α,β,β′,γ is generated by ξ1, ξ2 and

ξ3 = ωA
α − 〈ωA

α , BA
α,β,β′〉υ4, ξ4 = υ0

4 + BA
α,β,β′ +

(
Vα,β,γ − 1

2
〈BA

α,β,β′ , BA
α,β,β′〉

)
υ4.

One checks that ξ3 has the claimed form and ξ̃4 = ξ4 + β
2αξ3.

A “mirror dual” geometric interpretation of xA
α,β,β′,γ is obtained by using υ0 = υ0

2 , υ =

υ2 as generators of H0(A, Z) and H4(A, Z) and letting

ΩA
α,β,β′,γ := spanR(ξ3, ξ̃4) = spanR

(
υ0

3 + αυ3 +
β + β′

2
υ4, υ0

4 +
β − β′

2
υ3 + γυ4

)
(3.4)

specify the complex structure. It immediately follows that VA = 1, BA = 0 and ωA =

υ0
1 + υ1 in this geometric interpretation, in accord with the claim. It remains to show that

ΩA
α,β,β′,γ gives the claimed complex structure. Although this should follow from consistency

with the explanations given in section 2.2, as a reality check I include the detailed argument:

I show that the orthogonal complement of the kernel of the period map in H2(A, R)

has generators which with respect to standard generators υ0
3 , υ3, υ0

4 , υ4 of two copies of

a hyperbolic lattice H have precisely the form given in (3.4). Because by [65, Theorem
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1.14.4] the embedding H ⊕ H ↪→ H2(A, Z) is unique up to automorphisms of H2(A, Z),

(3.4) actually determines the relative position of ΩA
α,β,β′,γ with respect to H2(A, Z), such

that the claim then follows from the Torelli Theorem 3.5.

Since ρk ∈ PSL2(Z)\H and (τk, ρk) ∼ (−τk,−ρk) where τk = −τk for τk = i by

Proposition 2.2, I can work with the complex two-torus A obtained as product of two

elliptic curves with moduli

σ1 =
1

ρ1

=
−β +

√
∆

2γ
, σ2 = −ρ2 =

β′ +
√

∆

2
, ∆ = β2 − 4αγ.

Similarly to [66, p. 265 ff] I have A = C2/L, where the lattice L ⊂ C2 is generated by

l1 =

(
1

0

)
, l2 =

(
0

1

)
, l3 =

(−σ1

0

)
, l4 =

(
0

σ2

)
.

With m1, . . . ,m4 the basis dual to the one given by the lk,

υ0
1 := m1∧m3, υ1 := m4∧m2, υ0

3 := m1∧m2, υ3 := m3∧m4, υ0
4 := m2∧m3, υ4 := m1∧m4

generate H2(A, Z). Then the period map is given by

∑

i<j

det (lilj) mi ∧ mj = υ0
3 + σ2υ4 + σ1υ

0
4 − σ1σ2υ3.

The kernel of the period map hence is generated by

υ0
1 , υ1, υ0

3 − β − β′

2
υ4 − αυ3, υ0

4 − γυ4 −
β + β′

2
υ3,

and the orthogonal complement of the kernel of the period map indeed is precisely the

two-plane ΩA
α,β,β′,γ of (3.4). ut

By the above, Tα,β,β′,γ has a geometric interpretation on the torus Aα,β,γ of (3.2) which in

terms of standard Cartesian coordinates x1, . . . , x4 of R4 enjoys the symmetry

ζ4: (x1, x2, x3, x4) 7−→ (−x2, x1, x4,−x3) (3.5)

of order four. According to (3.3), ζ4 leaves υ0
1 + υ1, υ0

2 + υ2, υ0
3 , and υ3 invariant and thus

induces a map on Heven(A, R) which by the description in Proposition 3.9 leaves invariant

the four-plane xA
α,β,β′,γ ⊂ Heven(A, R) giving Tα,β,β′,γ . This means that ζ4 induces an

automorphism of Tα,β,β′,γ , so that a Z4-orbifold of this theory can be constructed:

Definition 3.10

For α, β, β′, γ ∈ R as in Definition 3.8 let Cα,β,β′,γ denote the Z4-orbifold of the SCFT

Tα,β,β′,γ, where Z4 is generated by the action induced by ζ4.

The theories Cα,β,β′,γ of Definition 3.10 are well understood and can be constructed ex-

plicitly without difficulty. E.g. by the results of [27] each of these theories is a SCFT

associated to K3 according to Definition 3.3. The results of [30, 67] allow me to describe

the four-plane xα,β,β′,γ ⊂ Heven(X, R) which specifies this theory in terms of the lattice
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Heven(X, Z), using a refined geometric interpretation on the Z4-orbifold limit Xα,β,γ of K3

obtained by minimally resolving the singularities of Aα,β,γ/Z4, where again Z4 is the group

generated by ζ4, and Aα,β,γ carries the Kähler and complex structure induced by (3.2).

Let me first introduce some notation which I need in order to describe this refined ge-

ometric interpretation: Let π:Aα,β,γ −→ Xα,β,γ denote the rational map obtained from

the orbifold procedure, and π∗:H2(A, R)Z4 −→ H2(X, R) the induced map on coho-

mology. Recall from [68, 30, 67] the description of the lattice H2(X, Z) in terms of

π∗H2(A, Z)Z4 and the exceptional divisors coming from the resolution of Aα,β,γ/Z4: Con-

sider the action of the subgroup Z2 of Z4 on Aα,β,γ . It has 16 fixed points, labeled

by an affine F4
2 over the field F2 with two elements 0, 1, where i = (i1, . . . , i4) ∈ F4

2

with ik ∈ {0, 1} corresponds to the fixed point at (x1, x2, x3, x4) = 1
2

∑
k ikλk. For our

Z4-orbifold we can use the same notation, where four of the fixed points listed in F4
2,

namely those in I(4) := {(0000), (1100), (0011), (1111)}, are fixed under Z4. The re-

maining twelve fixed points are paired to six fixed points under the Z2 subgroup of Z4,

where (i1, i2, i3, i4) ∼ (i2, i1, i4, i3). We denote by I(2) the set of these six fixed points, i.e.

I(2) = (F4
2 − I(4))/ ∼.

From the resolution of singularities of type A1 at the fixed points with labels i ∈ I(2)

we obtain six lattice vectors Êi ∈ H2(X, Z), 〈Êi, Êi〉 = −2. On the other hand, each

i ∈ I(4) gives a singularity of type A3, yielding three lattice vectors Ê
(k)
i , k ∈ {1, 2, 3},

each. Their intersection matrix is the negative of the Cartan matrix of the Lie algebra

A3, while all pairwise scalar products between vectors associated to different fixed points

vanish. Moreover, all the Êi, Ê
(k)
j are perpendicular to π∗H2(A, R)Z4 .

Proposition 3.11

With α, β, β′, γ ∈ R and notations as above and in particular as in Proposition 3.9 consider

the Z4-orbifold SCFTs Cα,β,β′,γ of Definition 3.10.

Cα,β,β′,γ has a refined geometric interpretation on Xα,β,γ = ˜Aα,β,γ/Z4 given by (Ω0
X , ωα,

Vα,β,γ , Bα,β,β′) as follows: With υ̂0, υ̂ generators of H0(X, Z) and H4(X, Z) such that

〈υ̂0, υ̂〉 = 1, the lattice π∗H2(A, R)Z4 ∩H2(X, Z) has generators υ̂0
3 = π∗υ0

3 , υ̂3 = π∗υ3, Ω̃1,

Ω̃2 such that

〈υ̂0
3 , υ̂

0
3〉 = 〈υ̂3, υ̂3〉 = 0, 〈υ̂0

3 , υ̂3〉 = 4, 〈Ω̃1, Ω̃1〉 = 〈Ω̃2, Ω̃2〉 = 2, 〈Ω̃1, Ω̃2〉 = 0,

and

Ω0
X = spanR

(
Ω̃1, Ω̃2

)
, ωα = υ̂0

3 + αυ̂3, Vα,β,γ =
1

4

(
γ − β2

4α

)
,

Bα,β,β′ = − β

8α
υ̂0

3 − β′

8
υ̂3 +

1

4
B̌4, B̌4 = −

∑

i∈I(2)

Êi −
∑

i∈I(4)

(
3

2

(
Ê

(1)
i + Ê

(3)
i

)
+ 2Ê

(2)
i

)

with primitive B̌4 ∈ H2(X, Z). The four-plane describing Cα,β,β′,γ within MK3 is

xα,β,β′,γ = spanR

(
Ω̃1, Ω̃2, υ̂0

3 + αυ̂3 +
β + β′

2
υ̂, 4υ̂0 +

β − β′

2
υ̂3 + B̌4 + (γ + 4) υ̂

)
.
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Cα,β,β′,γ has a “dual” refined geometric interpretation (ΩX
α,β,β′,γ , ωQ, VQ, BQ) with primitive

ωQ ∈ H2(X, Z),

ΩX
α,β,β′,γ = spanR

(
υ̂0

3 + αυ̂3 +
β + β′

2
υ̂, 4υ̂0 +

β − β′

2
υ̂3 + B̌4 + (γ + 4) υ̂

)
,

〈ωQ, ωQ〉 = 4, VQ =
1

2
, BQ = −1

2
ωQ.

The vectors υ̂0
3 , υ̂3, υ̂0, υ̂ generate a primitive sublattice of H2(X, Z) with quadratic form

(
4h 0

0 h

)
, where h =

(
0 1

1 0

)
.

Proof:

The claims about the lattice π∗H2(A, R)Z4 ∩ H2(X, Z) follow from [69], where Ω0
X gives

the complex structure of Xα,β,γ , see also [30, 67]. Moreover, in [30], [67, Theorem 3.3]

it is proved that Cα,β,β′,γ has a geometric interpretation (Ω0
X , π∗ωA

α , 1
4V A

α,β,γ , 1
4π∗BA

α,β,β′ +
1
4 B̌4) with ωA

α , V A
α,β,γ , and BA

α,β,β′ as in Proposition 3.9, from which the claims about the

first refined geometric interpretation are immediate. One checks 〈B̌4, B̌4〉 = −32. Using

Definition 3.7 for xα,β,β′,γ one thus finds generators

Ω̃1, Ω̃2, υ̂0
3 + αυ̂3 +

β + β′

2
υ̂, υ̂0 − β

8α
υ̂0

3 − β′

8
υ̂3 +

1

4
B̌4 +

(
γ

4
− β(β + β′)

16α
+ 1

)
υ̂,

which are seen to simplify to the form claimed.

To obtain the claimed “dual” refined geometric interpretation, for i ∈ I(4) let Êi :=

Ê
(1)
i + 2Ê

(2)
i + 3Ê

(3)
i and recall from [67, Proposition 2.1] that the lattice H2(X, Z) in

particular contains the vectors

1

2
Ω̃1 − 1

2

(
Ê(0,0,0,0) + Ê(1,0,0,0) + Ê(0,0,0,1) + Ê(0,1,0,1)

)
,

1

2
Ω̃2 − 1

2

(
Ê(0,0,0,0) + Ê(1,0,0,0) + Ê(0,0,0,1) + Ê(1,0,0,1)

)
.

Hence also

υQ :=
1

2

(
Ω̃1 − Ω̃2

)
− 1

2

(
Ê(0,1,0,1) − Ê(1,0,0,1)

)
,

υ0
Q :=

1

2

(
Ω̃1 + Ω̃2

)
+

1

2

(
Ê(0,1,0,1) − Ê(1,0,0,1)

)

are lattice vectors, and one checks that they are null vectors obeying 〈υ0
Q, υQ〉 = 1. To

determine the corresponding refined geometric interpretation, one first finds

Σ̃α,β,β′,γ = xα,β,β′,γ ∩ (υQ)⊥

= spanR

(
Ω̃1 + Ω̃2, υ̂0

3 + αυ̂3 +
β + β′

2
υ̂, 4υ̂0 +

β − β′

2
υ̂3 + B̌4 + (γ + 4) υ̂

)
.
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Projection onto H2(X, R) = Heven(X, R)∩ (υQ)⊥∩ (υ0
Q)⊥ then shows that we can interpret

ΩX
α,β,β′,γ := span

(
υ̂0

3 + αυ̂3 +
β + β′

2
υ̂, 4υ̂0 +

β − β′

2
υ̂3 + B̌4 + (γ + 4) υ̂

)
⊂ H2(X, R)

as specifying the complex structure of this geometric interpretation, while

ωQ := 2Ω̃2 + Ê(0,1,0,1) − Ê(1,0,0,1)

gives the normalized Kähler form. The latter is indeed a primitive lattice vector with

〈ωQ, ωQ〉 = 4. Moreover, υ̂0
3 , υ̂3, υ̂0, υ̂ ∈ H2(X, Z), such that the claim about the lat-

tice that these vectors generate is immediate from the above. Next notice that ξ4 :=
1
2

(
Ω̃1 − Ω̃2

)
obeys

xα,β,β′,γ = Σ̃α,β,β′,γ ⊥ 〈ξ4〉, 〈ξ4, υQ〉 = 1,

such that in this geometric interpretation our K3 surface has volume

VQ =
1

2
〈ξ4, ξ4〉 =

1

2
.

Finally,

BQ := ξ4 − υ0
Q = −1

2

(
2Ω̃2 + Ê(0,1,0,1) − Ê(1,0,0,1)

)
= −1

2
ωQ

is perpendicular to both υ0
Q, υQ and hence gives the B-field in this geometric interpretation.

ut

4. The main claim and its geometric background

I have now provided all the necessary background material to present the main result of this

paper. I do so in section 4.1: The family Cα,β,β′,γ of SCFTs on K3, which is obtained by

means of an orbifold construction, is given a geometric interpretation on a smooth family

of smooth algebraic K3 surfaces. In this geometric interpretation, α, β, β′, γ give complex

structure parameters. This family of SCFTs on K3 hence is well under control both from

a conformal field theorist’s and from an algebraic geometer’s point of view. As such, it is

a first example of its kind.

Section 4.1 also contains a first part of the proof of this claim. A geometric explanation

arises by extending a construction due to Inose. I therefore devote section 4.2 to a summary

of Inose’s work [52]. Section 4.3 explains how my main result extends Inose’s construction,

using a specific (crude) version of mirror symmetry. As an implication, which allows for a

proof purely within geometry, I show how the natural metric on the Fermat quartic, i.e.

the Kähler-Einstein metric in the class of the Fubini-Study metric on CP3, is related to an

orbifold limit of a metric on a Kummer surface. This description makes the former metric

accessible to numerical investigations following [53]. I therefore find it interesting in its

own right and include the discussion in section 4.3.
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4.1 The main result

As explained in section 3.1, the moduli space of SCFTs associated to Calabi-Yau 2-folds

is known, at least to a high degree of plausibility (the open problems were pointed out

there). Section 3.2 was devoted to the discussion of two families of examples, one in each

connected component of the moduli space associated to real four-tori and K3 surfaces,

respectively. However, further examples of such SCFTs where explicit constructions are

known are severely restricted: While all SCFTs associated to real four-tori are known,

along with their locations within Mtori [24, 21], the only known constructions of SCFTs

associated to K3 are orbifold constructions and the Gepner construction [28, 29]. For the

former, the locations within the moduli space have been worked out in [30, 67]. The latter

give about 50 discrete points in the moduli space known as Gepner or Gepner type models,

and for some examples the locations have been determined in [30]. However, no direct

construction for SCFTs associated to smooth K3 surfaces is known, let alone for a family

of such surfaces. This is why I find the following result surprising:

Result 4.1

For α, β, β′, γ ∈ R as in Definition 3.8, the SCFT Cα,β,β′,γ of Definition 3.10 has a refined

geometric interpretation on the smooth quartic K3 surface

X(f1, f2): f1(x0, x1) + f2(x2, x3) = 0 in CP3,

where f1, f2 are homogeneous quartic polynomials such that the elliptic curves

Efk
: y2

0 = fk(y1, y2) in CP2,1,1

have periods ρ1, ρ2 ∈ H with

ρ1 =
−β +

√
∆

2α
, ρ2 =

−β′ +
√

∆

2
, ∆ = β2 − 4αγ

as in Definition 3.8, thus defining an Abelian variety

A(f1, f2) := Ef1 × Ef2 .

More precisely this refined geometric interpretation carries the natural complex and Kähler

structure induced by X(f1, f2) ↪→ CP3, i.e. the normalized Kähler class is the class ωFS

induced by the Fubini-Study metric on CP3, and the volume and B-field are VFS = 1
2 ,

BFS = −1
2ωFS.

Section 5 is devoted to the proof of this statement. However, at this stage I can already

prove the following weaker result which also gives some insight into the geometric origin of

the main claim:

Lemma 4.2

For α, β, β′, γ ∈ R as in Definition 3.8 consider the SCFT Cα,β,β′,γ of Definition 3.10

and its refined geometric interpretation (ΩX
α,β,β′,γ , ωQ, VQ, BQ) of Proposition 3.11. Then

the complex structure ΩX
α,β,β′,γ agrees with the one of X(f1, f2) ⊂ CP3 with X(f1, f2) as
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in Result 4.1. In fact this is true for any refined geometric interpretation (Ω, ω, V,B) of

Cα,β,β′,γ with Ω = ΩX
α,β,β′,γ.

Proof:

By Proposition 3.11,

ΩX
α,β,β′,γ = spanR

(
υ̂0

3 + αυ̂3 +
β + β′

2
υ̂, 4υ̂0 +

β − β′

2
υ̂3 + B̌4 + (γ + 4) υ̂

)
,

where υ̂0
3 , υ̂3, υ̂0, υ̂ generate a primitive sublattice of H2(X, Z) with signature (2, 2), and

B̌4 ∈ H2(X, Z) is primitive with 〈B̌4, B̌4〉 = −32. Setting υ̂0
4 := 4υ̂0 + B̌4 + 4υ̂ and υ̂4 := υ̂

we obtain

ΩX
α,β,β′,γ = spanR

(
υ̂0

3 + αυ̂3 +
β + β′

2
υ̂4, υ̂0

4 +
β − β′

2
υ̂3 + γυ̂4

)
, (4.1)

where υ̂0
3 , υ̂3, υ̂0

4 , υ̂4 generate a primitive sublattice Γ̂2,2 of H2(X, Z). By the results

of Proposition 3.11 this lattice is Γ̂2,2 = Γ2,2(4), the sum of two hyperbolic lattices

Γ2,2 = H ⊕ H with quadratic form rescaled by a factor of 4. By [65, Theorem 1.14.4]

(see also [70, Corollary 2.10]), the embedding Γ̂2,2 ↪→ H2(X, Z) is unique up to automor-

phisms of H2(X, Z). Hence (4.1) fixes the location of ΩX
α,β,β′,γ within H2(X, R) with respect

to H2(X, Z). By the Torelli Theorem 3.5 this uniquely identifies the complex structure.

Similarly, I showed in Proposition 3.9 that the complex structure of the Abelian variety

A(f1, f2) = Ef1×Ef2 is given by the two-plane ΩA
α,β,β′,γ ⊂ H2(A, R) whose relative position

with respect to H2(A, Z) is specified by

ΩA
α,β,β′,γ = spanR

(
υ0

3 + αυ3 +
β + β′

2
υ4, υ0

4 +
β − β′

2
υ3 + γυ4

)
,

where υ0
3 , υ3, υ0

4, υ4 generate a primitive sublattice Γ2,2 ⊂ H2(X, Z) with Γ2,2 = H ⊕ H

as above. In [52] Inose shows that A(f1, f2) and X(f1, f2) are isogeneous, namely the

Kummer surface constructed from A(f1, f2) is biholomorphic to a Z2-orbifold of X(f1, f2).

Using [52, Lemma 5.7] in conjunction with [71, appendix §5] the complex structure of

X(f1, f2) is thus described by a two-plane in H2(X, R) which has precisely the same form

as ΩA
α,β,β′,γ ⊂ H2(A, R) but with the quadratic form of Γ2,2 rescaled by a factor of 4. Since

Γ̂2,2 = Γ2,2(4), a comparison with (4.1) completes the proof. ut

The above proof is in line with the main idea of [67], where for every geometric G-orbifold

construction of K3 from a complex two-torus A the rational map π:A −→ X = Ã/G

induced from the orbifold construction was studied. More precisely, the induced map

π∗:H2(A, R)G −→ H2(X, R) was extended to the total even cohomology Heven(A, R)G.

The result [67, (4.1)] shows that the vectors υ̂0
4 , υ̂4 used in the proof of the above Lemma 4.2,

see (4.1), are the images of the vectors υ0, υ ∈ Heven(A, Z) under π∗ which in the geometric

interpretation (Ω0
A, ωA

α , V A
α,β,γ , BA

α,β,β′) of Tα,β,β′,γ in Proposition 3.9 on Aα,β,γ generate

H0(A, Z) and H4(A, Z).

The result of Lemma 4.2 is part of the claimed Result 4.1. It seems to imply that the

“dual” refined geometric interpretation of Cα,β,β′,γ in Proposition 3.11 is the desired one.
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Indeed, Lemma 4.2 says that the complex structure of that refined geometric interpretation

is as wanted, and Proposition 3.11 confirms that its Kähler structure, volume, and B-field

are in accord with the claim in Result 4.1. One would hence like to show that ωQ in

Proposition 3.11 is the Kähler class induced by the Fubini-Study metric of CP3. However,

lattice calculations alone cannot yield such a proof, and I cannot claim ωQ = ωFS. The

necessary additional ingredients are explained in section 5.1, and the proof is completed in

section 5.2.

The use of Inose’s work [52] gives a lead to understand the geometry underlying Re-

sult 4.1, which I shall follow on in section 4.2. Before doing so, let me put the statement of

the result into context. Namely, a main ingredient in the proof was the fact that all rele-

vant complex structures are given by two-planes ΩY
α,β,β′,γ (Y = X or Y = A) which can be

specified in terms of lattices of signature (p, q) = (2, 2), and that such lattices have unique

embeddings into H2(Y, Z) as primitive sublattices by Nikulin’s results [65]. Here, p, q < 3 is

crucial; in fact, the two-planes ΩY
α,β,β′,γ are generated by lattice vectors iff α, β, β′, γ ∈ Q,

i.e. for a dense subset of the parameter space. In other words, iff α, β, β′, γ ∈ Q, then

A(f1, f2) and X(f1, f2) are attractive according to

Definition 4.3

A Calabi-Yau 2-fold Y with complex structure given by a two-plane ΩY ⊂ H2(Y, R) which

is generated by lattice vectors in H2(Y, Z) is called attractive.

If X is an attractive K3 surface with complex structure given by ΩX ⊂ H2(X, R), and

if the quadratic form of the lattice ΩX∩H2(X, Z) is 4QA with QA an even integral quadratic

form on that lattice, then X with this complex structure is called very attractive.

For the family A(f1, f2) = Ef1 × Ef2 of Abelian varieties with Efk
as in Result 4.1 we

see from (3.4) that for α, β, γ ∈ Z and β′ = β the quadratic form of ΩA
α,β,β′,γ ∩ H2(A, Z)

simply is
„

2α β

β 2γ

«
. This form however changes dramatically as α, β, β′, γ vary in Q.

In the original mathematics literature, attractive Calabi-Yau 2-folds are called singular.

Since this word can be misleading, I follow Moore’s suggested terminology. In [49, 48]

Moore identifies such complex structures as attractor points for the dynamical systems

associated to extremal static spherically symmetric supersymmetric black holes, which

explains his terminology, see also [72]. The “very attractive” terminology of Definition 4.3

is justified because Inose shows in [52, Theorem 1] that “very attractive” K3 surfaces are

the special attractive K3 surfaces of the form X(f1, f2). For the latter, the quadratic form

of ΩX(f1,f2) ∩ H2(X, Z) is 4QA where QA is the quadratic form of ΩA(f1,f2) ∩ H2(A, Z).

By the above the “very attractive” K3 surfaces are dense in the family X(f1, f2). This

statement makes sense even though it is known [73] that the moduli space of complex

structures on K3 does not carry a Hausdorff topology: We are varying surfaces X(f1, f2)

in CP3, giving complex structures with a fixed polarization. In other words, in effect we

are varying “marked pairs” of complex and Kähler structures (c.f. [74, p. 335]), and their

moduli space is indeed Hausdorff [74, Theorem VIII.12.3].

A note on rationality: A SCFT Cα,β,β′,γ of Result 4.1 is rational iff the underlying

toroidal SCFT Tα,β,β′,γ is rational. For the latter, equivalently the two tensor factors

giving SCFTs associated to elliptic curves are rational. A SCFT associated to an elliptic
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curve with geometric interpretation given by τ, ρ ∈ H is rational iff there exists D ∈ Q

such that τ, ρ ∈ Q(
√
−D) (see [48]). In our example the parameters τ1 = i = τ2 for the

two tensor factors are fixed, so Tα,β,β′,γ and thereby Cα,β,β′,γ is rational iff ρ1, ρ2 ∈ Q(i),

or equivalently α, β, β′,
√
−∆ ∈ Q. It is easy to find examples of α, β, β′, γ ∈ Q such that

∆ = β2−4αγ has
√
−∆ 6∈ Q. In other words, by Proposition 3.11 one finds examples of non-

rational SCFTs in MK3 that are described by a four-plane xα,β,β′,γ ⊂ Heven(X, R) which

is generated by lattice vectors in Heven(X, Z). This contradicts one of the many beliefs

about the relation between rationality of SCFTs and the rôle of the lattice Heven(X, Z) ⊂
Heven(X, R).

4.2 Inose’s construction

To allow insight into the geometry underlying Result 4.1, let me briefly summarize Inose’s

work [52]. Choose two homogeneous polynomials f1, f2 of degree 4 in two variables each.

I will assume that f1, f2 are non-degenerate, i.e. that they do not have multiple roots. As

in Result 4.1 these polynomials define elliptic curves

Efk
: y2

0 = fk(y1, y2) in CP2,1,1

with moduli ρ1, ρ2 ∈ H, see section 2.3 and A. ρ1, ρ2 can always be brought into the form

used in Result 4.1. The polynomials f1, f2 also define a smooth quartic K3 surface

X(f1, f2) : f1(x0, x1) + f2(x2, x3) = 0 in CP3.

Note that all the surfaces X(f1, f2) share the symplectic automorphism σ given by

σ: (x0, x1, x2, x3) 7−→ (−x0,−x1, x2, x3). (4.2)

This automorphism generates a group 〈σ〉 of order 2. Now let Y (f1, f2) denote the K3

surface obtained by blowing up the eight nodal singularities of X(f1, f2)/〈σ〉. On the

other hand let Km(Ef1 × Ef2) denote the K3 surface obtained from the Abelian variety

A(f1, f2) = Ef1 ×Ef2 by the Kummer construction. In other words, we represent Ef1 ×Ef2

as C2/∼ with standard coordinates (z1, z2) and zk ∼ zk + 1 ∼ zk + ρk, to obtain a natural

Z2 action by multiplication by −1 on C2. Now Km(Ef1 × Ef2) is obtained by blowing up

the sixteen nodal singularities of Ef1 × Ef2/Z2. Hiroshi Inose has discovered

Theorem 4.4 [52, Theorem 2]

The K3 surface Y (f1, f2) obtained from X(f1, f2)/〈σ〉 by minimally resolving all singu-

larities is canonically biholomorphic to the Kummer surface Km(A(f1, f2)) of the Abelian

variety A(f1, f2) = Ef1 × Ef2 .

The geometric situation found in [52] is as follows: Denote the roots of fl(1, ζ) = 0 by

ζ l
j ∈ C where for later convenience I use indices j ∈ F2

2 = {00, 10, 01, 11}. The quartic

X(f1, f2) contains sixteen lines

Ẽjk :
{
(x0, x1, x2, x3) | x1 = ζ1

j x0, x3 = ζ2
kx2

}
.
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G̃00 G̃10 G̃01 G̃11

F̃00 F̃10 F̃01 F̃11

Ẽ0000 Ẽ1111

Figure 2: The sixteen lines Ẽjk = F̃jG̃k in X(f1, f2).

F00 F11 F10 F01

G00

G11

G10

G01

E0000 E1100 E1000 E0100

E0011 E1111 E1011 E0111

E0010 E1110 E1010 E0110

E0001 E1101 E1001 E0101

Figure 3: The double Kummer pencil in Y (f1, f2).

The four lines Ẽj00, . . . , Ẽj11 intersect in the fixed point F̃j = (1, ζ1
j , 0, 0) of σ, while the

four lines Ẽ00k, . . . , Ẽ11k intersect in the fixed point G̃k = (0, 0, 1, ζ2
k ) of σ, forming a

constellation as depicted in figure 2. Though the figure is note entirely suggestive, the

F̃j , G̃k are the only intersection points of any two lines Ẽlm. These lines are mapped

onto themselves under the linear automorphism σ. In the resolved orbifold Y (f1, f2) they

therefore give rational curves Ejk, while the fixed points F̃j , G̃k of σ are blown up giving

eight exceptional rational curves Fj , Gk. Altogether Inose finds a double Kummer pencil in

Y (f1, f2) as shown in figure 3. Moreover, the sixteen rational curves Ejk can be identified

with the sixteen irreducible components of the exceptional divisor in Km(Ef1 ×Ef2), while

the Fj , Gk can be interpreted in terms of two-cycles of Ef1 × Ef2 = C2/∼. Namely,

in H2(X, Z) : ∀ j, k ∈ F2
2 : 2Fj + Ej00 + Ej10 + Ej01 + Ej11 = M12,

2Gk + E00k + E10k + E01k + E11k = M34,
(4.3)

where M12 is the class of the image of the cycle z1 = const. in Ef1 × Ef2 = C2/∼, while

the class M34 gives the image of the cycle z2 = const.

– 24 –



J
H
E
P
0
3
(
2
0
0
6
)
1
0
2

4.3 Inose’s construction extended?

In view of Inose’s geometric insights I can reformulate the Result 4.1 as follows: Since

by Proposition 3.9 each Tα,β,β′,γ has a refined geometric interpretation on the Abelian

variety A(f1, f2), and Cα,β,β′,γ is claimed to have a refined geometric interpretation on

X(f1, f2), the assertion amounts to the SCFTs Cα,β,β′,γ , Tα,β,β′,γ , and the ordinary Z2-

orbifold Tα,β,β′,γ/Z2 to provide an extension of Inose’s construction to the realm of Calabi-

Yau 2-folds with complexified Kähler structures, in other words to the realm of SCFTs.

That such extensions should exist is in itself not surprising. However, surprisingly both

on X(f1, f2) and on A(f1, f2) the most natural Kähler structures turn out to occur, the

ones arising from X(f1, f2) ↪→ CP3 and A(f1, f2) ∼= C2/ ∼, respectively. In contrast, note

that every “very attractive” quartic (see Definition 4.3) is biholomorphic to some Kummer

surface; for instance C1,0,0,1 has a geometric interpretation on the (very attractive) Fermat

quartic

XFermat = X(f0, f0): x4
0 + x4

1 + x4
2 + x4

3 = 0 in CP3 (4.4)

by Result 4.1 and (2.8) but nevertheless cannot be constructed from any toroidal model

by a Z2-orbifold procedure [30, p. 123]. Furthermore, it is not obvious that in any

given extension of Inose’s picture all associated SCFTs can be constructed explicitly, let

alone by geometric orbifolds like the one yielding Cα,β,β′,γ from Tα,β,β′,γ . To understand

why this is possible in the present case, note that assuming Result 4.1 it follows that

Tα,β,β′,γ/Z2 is also a Z2-orbifold of Cα,β,β′,γ . For every CFT C, an orbifold C/G by a

solvable group G enjoys an action of G such that orbifolding C/G by G reproduces the

original CFT C [75, p. 126]. It follows that any extension of Inose’s construction to the

level of SCFTs must yield theories associated to X(f1, f2) which are obtained from theo-

ries associated to A(f1, f2) by an orbifold by a group of order 4, i.e. by a Z2 × Z2 or by

a Z4-action on a family of toroidal SCFTs. Choosing the complexified Kähler structure

ωA = − i
2 (dz1 ∧ dz1 + dz2 ∧ dz2) , VA = 1, BA = 0 of Proposition 3.9 on A(f1, f2) ensures

that the associated SCFTs Tα,β,β′,γ all enjoy an automorphism of order 4, namely the Z4-

symmetry which is induced by the geometric Z4-action ζ4 of (3.5) in the “mirror dual”

refined geometric interpretation of Tα,β,β′,γ on Aα,β,γ as in (3.2) and with B-field Bα,β,β′ as

in Proposition 3.8.

In geometry, the reversal of an orbifold construction by another orbifold is of course

impossible. Indeed, if C is a CFT associated to some Calabi-Yau variety Y and G is a

solvable symmetry group of C which is induced by symplectic automorphisms of Y , then

C/G is a SCFT associated to Ỹ/G [25, 26], and the symmetry of type G which C/G enjoys

and which yields C back under orbifolding is not a geometric symmetry of Ỹ/G. Such

symmetries are known as quantum symmetries.

That the theories Cα,β,β′,γ in Result 4.1 are nevertheless obtained by a geometric

orbifold construction from the theories Tα,β,β′,γ is a consequence of the geometric re-

interpretation of Tα,β,β′,γ described in Proposition 3.9. Indeed, one of the crucial ideas

from the early days of mirror symmetry is the observation that mirror symmetry is a

non-classical equivalence between SCFTs, which interchanges the rôles of geometric and

quantum symmetries [20]. With an appropriate version of mirror symmetry it should there-
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fore be possible to find a geometric interpretation of Tα,β,β′,γ/Z2 which has a geometric

Z2-symmetry that upon orbifolding yields Cα,β,β′,γ . Because the ordinary Z2-orbifold of

a toroidal SCFT T descends to the Kummer construction in every refined geometric in-

terpretation of T , we can equivalently expect to find a refined geometric interpretation

of Tα,β,β′,γ such that the total symmetry group of order 4 which upon orbifolding yields

Cα,β,β′,γ acts geometrically. Result 4.1 consequentially claims that this desired refined geo-

metric interpretation is the “mirror dual” of the one on A(f1, f2) with complexified Kähler

structure (ωA, VA, BA), as given in Proposition 3.9, and that this geometric action is the

standard action (3.5) of Z4.

It is indeed natural to view the two geometric interpretations (Ω0
A, ωA

α , V A
α,β,γ , BA

α,β,β′)

and (ΩA
α,β,β′,γ , ωA, VA, BA) of Proposition 3.9 as mirror duals: On the one hand, by the proof

of Proposition 3.9 exchanging these two geometric interpretations amounts to interchanging

the modular parameters τk, ρk that specify the two tensor factor theories of Tα,β,β′,γ which

are SCFTs associated to elliptic curves, where according to section 2.2 a version of mirror

symmetry is given by U(τk, ρk) = (ρk, τk). On the other hand, according to Proposition 3.9

the exchange of the two geometric interpretations of Tα,β,β′,γ amounts to interchanging the

rôle of the two-planes Ω0
A and ΩA

α,β,β′,γ which xA
α,β,β′,γ decomposes into, i.e. indeed to

interchanging complex and complexified Kähler structures. Note furthermore that the Z4-

orbifold procedure yielding the K3 surface Xα,β,γ = ˜Aα,β,γ/Z4 from Aα,β,γ = R4/Λα,β,γ

of (3.2) can indeed be performed in terms of two consecutive Z2-orbifolds, the first one of

which is the Kummer construction.

I hope to have convinced the reader that Result 4.1 does have a natural interpretation

as extension of Inose’s construction to the realm of SCFTs. However, in the above explana-

tion I have used a very crude version of mirror symmetry, which amounts to interchanging

the two-planes of a refined geometric interpretation of a SCFT but does not address the

choice of null vectors as needed within any refined geometric interpretation according to

Definition 3.6. Likewise, the notion of “quantum symmetries” was used in a slightly ob-

scure fashion without proper definition, and in particular without giving a procedure to

distinguish between “geometric” and “quantum” symmetries. Hence the above can only

serve as a motivation, not as a proof of Result 4.1.

On purely geometric grounds the above discussion naturally raises the question whether

Inose’s construction can be extended to the level of Kähler-Einstein metrics. More precisely,

the class of the most natural Kähler structure on X(f1, f2) is the class ωFS ∈ H2(X, Z) of

the Fubini-Study metric on CP3,

ωFS(x) =
i

2π
∂∂ log




3∑

j=0

|xj |2

 for x = (x0, x1, x2, x3) ∈ CP3.

By the Calabi-Yau theorem [76] there is a unique Kähler-Einstein metric on X(f1, f2) with

Kähler class ωFS. Since ωFS is invariant under σ it descends to a class ω̂FS on Y (f1, f2).

The class ω̂FS in turn represents the orbifold limit of an Einstein metric on Y (f1, f2), which

assigns vanishing volume to all components of the exceptional divisor in the resolution of
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X(f1, f2)/〈σ〉:
∀ j, k ∈ F2 : 〈ω̂FS, F̂j〉 = 〈ω̂FS, Ĝk〉 = 0 (4.5)

with F̂j , Ĝk denoting the Poincaré duals of Fj , Gk, respectively (see figure 3). One also

checks

〈F̂j , M̂12〉 = 〈Ĝk, M̂34〉 = 0, 〈F̂j , M̂34〉 = 〈Ĝk, M̂12〉 = 1, 〈F̂j ,
∑

l∈F4
2

Êl〉 = 〈Ĝi,
∑

l∈F4
2

Êl〉 = 4

(4.6)

with Êl, l ∈ F4
2 denoting the Poincaré duals of the rational curves El, and M̂j obtained as

Poincaré duals of the classes Mj introduced in (4.3),

M̂j ∈ H2(X, Z), 〈M̂j , M̂j〉 = 0, 〈M̂12, M̂34〉 = 2,

see e.g. [32]. From what was said above one expects that it should be possible to express

ω̂FS in terms of the simpler geometry of the Kummer surface Km(Ef1 × Ef2). Indeed, the

result is remarkably simple:7

Proposition 4.5

Let ω̂FS, ω̂Km represent the orbifold limits of Kähler-Einstein metrics on ˜X(f1, f2)/〈σ〉 =

Km(A(f1, f2)) induced by the Kähler-Einstein metric with class ωFS of the Fubini-Study

metric on X(f1, f2), and ωA, the class of the Euclidean metric on C2 with A(f1, f2) =

C2/ ∼, respectively. Then

ω̂FS = 2ω̂Km − 1

2

∑

i∈F4
2

Êi.

Proof:

The key to the proof is the use of the explicit identifications of cycles [52] given in sec-

tion 4.2, along with a study of symplectic automorphisms of the Fermat quartic hypersur-

face XFermat = X(f0, f0) of (4.4). Indeed, one checks

ω̂Km = M̂12 + M̂34,

and since ω̂Km, ω̂FS ∈ H2(Y, Z) do not change while f1, f2 vary, a proof of the claim for the

〈σ〉-orbifold of the Fermat quartic XFermat is sufficient. The group GFermat of symplectic

automorphisms of XFermat is well known. It is generated by phase symmetries

[n0, . . . , n3]: (x0, . . . , x3) 7−→ (in0x0, . . . , i
n3x3) with nk ∈ Z/4Z and

∑

k

nk ≡ 0mod 4

along with permutations γ ∈ S4 of the coordinates accompanied by phase symmetries

[n0, . . . , n3] as above such that
∑

k nk ≡ (1− det γ)mod 4. Since [1, . . . , 1] acts trivially on

CP3 we find GFermat
∼= Z3

4 o S4/Z4.

7In [53] a family of Ricci-flat Kähler-Einstein metrics is determined numerically which by Proposition 4.5

turns out to approach the one represented by bωF S. In fact, the explicit form of Proposition 4.5 arose as

a conjecture from a discussion with the authors Matthew Headrick and Toby Wiseman of [53], and I am

grateful to them for raising the relevant questions that led to this observation.
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The commutant of σ ∈ GFermat in GFermat gives the group Z3
4 o D4/Z4 with Z3

4 as

before and generators r, s of D4, which acts as the dihedral group of order 8:

r: (x0, x1, x2, x3) 7−→ (x2, x3, x1,−x0),

s: (x0, x1, x2, x3) 7−→ (x1,−x0, x2, x3).

Each element of this group Z3
4 oD4/Z4 induces a symplectic automorphism on the orbifold

YFermat of XFermat by 〈σ〉. However,
�

and σ ∈ Z3
4oD4/Z4 induce the trivial automorphism,

leaving us with the group GKm = (Z2 × Z4) o D4 generated by t1100 := [1, 3, 0, 0], t1000 :=

s, r12 := r ◦ s, r13 := [1, 0, 0, 3] ◦ r2, with notations as above. For later convenience note

in CP3/〈σ〉 : t1100: (x0, x1, x2, x3) 7−→ (ix0,−ix1, x2, x3),

t1000: (x0, x1, x2, x3) 7−→ (x1,−x0, x2, x3),

r12: (x0, x1, x2, x3) 7−→ (x2, x3, x0, x1),

r13: (x0, x1, x2, x3) 7−→ (−ix1, x0, x3, ix2).

Let us now investigate these automorphisms in the light of the interpretation of YFermat

as Kummer surface as in Theorem 4.4. More precisely, I will determine the action on the

cycles Fj , Gk, El, j, k ∈ F2
2, l ∈ F4

2, introduced above. I will in particular be interested

in those cycles which are invariant under the entire group GKm, since the class ωFS is

invariant under GFermat and hence the class ω̂FS which we wish to express in terms of

the Kummer geometry is Poincaré dual to a cycle which is invariant under GKm. All the

rational curves Fj , Gk, El are uniquely determined by the positions of the fixed points

F̃j , G̃k of σ. Because GKm acts projectively linearly, it suffices to determine the action of

GKm on these fixed points. To this end denote by ε a primitive eighth root of unity such

that ε2 = i. Then for the Fermat quartic we denote the roots ζ l
j of the quartic polynomial

f0(1, ζ) = 1 + ζ4 = 0 by

ζ l
00 = ε, ζ l

11 = −ε, ζ l
10 = iε, ζ l

01 = −iε.

Consider the action of t1100. The fixed points G̃k = (0, 0, 1, ζ2
k ) are invariant under this

automorphism, while it interchanges F̃00 with F̃11, and F̃10 with F̃01, respectively. In

other words, t1100 acts by a shift by (1100) on the index set F4
2 of the El. Similarly,

t1000 leaves the fixed points G̃k = (0, 0, 1, ζ2
k ) invariant. It interchanges F̃00 with F̃10, and

F̃01 with F̃11, respectively. In other words, t1000 acts by a shift by (1000) on the index

set F4
2 of the El. The action of r12 is most easily determined - it acts on the indices

l ∈ F4
2 of the El by the permutation (l1, l2, l3, l4) 7→ (l3, l4, l1, l2). Finally, one checks

that r13 leaves F̃00, F̃11, G̃00, G̃11 invariant while interchanging F̃10 with F̃01, and G̃10

with G̃01. In other words, r13 acts on the indices l ∈ F4
2 of the El by the permutation

(l1, l2, l3, l4) 7→ (l2, l1, l4, l3).

Translating into cohomology by means of the Poincaré duality we find a two-dimensio-

nal subspace of H1,1(X, C)∩H2(X, Z) which is invariant under all of GKm, with generators

ω̂Km = M̂12 + M̂34 and Ê :=
∑

l∈F4
2

Êl, 〈ω̂Km, Ê〉 = 0.
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On the other hand, recall that for an algebraic K3 surface X with group G of symplectic

automorphisms the dimension of the G-invariant subspace
(
H1,1(X, C) ∩ H2(X, Z)

)G
of

H1,1(X, C) ∩ H2(X, Z) can be determined by purely combinatorial methods [77]. Namely,

the group G induces an action on the total rational cohomology H∗(X, Q) given by a

so-called Mathieu representation [77, Theorem 1.4], which implies

dimQ H∗(X, Q)G = µ(G) :=
1

|G|
∑

g∈G

µ(ord(g)),

where for n ∈ N : µ(n) :=
24

n
∏

p prime,
p|n

(1 + 1
p)

[77, Proposition 3.4]. Since G acts symplectically, we have

dimQ H∗(X, Q)G = dimR H∗(X, R)G = dimC H∗(X, C)G.

By the definition of symplectic automorphisms H∗(X, C)G ⊃ H0(X, C) ⊕ H2,0(X, C) ⊕
H0,2(X, C) ⊕ H2,2(X, C), so

dimR

(
H1,1(X, C) ∩ H2(X, R)

)G
= µ(G) − 4. (4.7)

For our group GKm one checks

µ(GKm) =
1

64
(µ(1) + 27µ(2) + 36µ(4)) =

24

64

(
1 +

27

3
+

36

6

)
= 6.

By (4.7) this implies that H1,1(X, C)∩H2(X, R) has only a two-dimensional GKm invariant

subspace which hence is generated by ω̂Km and Ê. Since the form ω̂FS ∈ H1,1(X, C) ∩
H2(X, R) is also invariant under GKm we can make an ansatz

ω̂FS = λ
(
ω̂Km + αÊ

)
= λ

(
M̂12 + M̂34 + αÊ

)
.

Now (4.5) and (4.6) imply α = −1
4 . Moreover, since ω̂FS is the image of a primitive

lattice vector ωFS ∈ H2(X, Z) in integral cohomology, ω̂FS is a primitive lattice vector.

Since 1
2Ê ∈ H2(X, Z) is primitive and 〈M̂j , Ê〉 = 0 with indecomposable M̂j spanning a

primitive sublattice of H2(X, Z) [32], we find λ = ±2. Finally, λ = 2 follows since ω̂FS is

a Kähler class and all El are effective, thus 〈ω̂FS, Êl〉 > 0 for all l ∈ F4
2. ut

The above proof shows that the action of GKm on Fj , Gk, El could be induced by the

group G+
Kummer

∼= F4
2 o Z2

2
∼= GKm of automorphisms that fix the orbifold singular metric

of a Kummer surface constructed from Ef0 ×Ef0, and which descend from automorphisms

of this variety [30, Theorem 2.7]. Namely, see appendix A for a proof of the well-known

identification Ef0
∼= C/Z⊕ iZ which implies Ef0 ×Ef0

∼= C2/
(
Z2 ⊕ iZ2

)
. Then elements of

F4
2 ⊂ G+

Kummer act by shifts by half periods on C2/∼, while Z2
2 ⊂ G+

Kummer is generated by

(z1, z2) 7→ (z2,−z1) and (z1, z2) 7→ (iz1,−iz2). Although it seems likely that indeed GKm =

G+
Kummer, note that we have only compared the actions on a sublattice of H1,1(X, C) ∩

H2(X, Z) of rank 18, while for the Fermat quartic H1,1(X, C) ∩ H2(X, Z) has maximal

rank 20. Hence we cannot conclude that the actions of the two groups agree. Luckily

the observation that the actions agree on Fj , Gk, El has turned out to suffice to prove

Proposition 4.5.
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5. Proof of the main result

In this section I complete the proof of the main Result 4.1 of this work. The proof consists

of three steps, the first one of which I have already taken in Lemma 4.2 where I proved

that for α, β, β′, γ ∈ R as in Definition 3.8 the SCFT Cα,β,β′,γ of Definition 3.10 allows a

geometric interpretation (ΩX
α,β,β′,γ , ωQ, VQ, BQ) with ΩX

α,β,β′,γ the complex structure of the

quartic K3 surface X(f1, f2) ⊂ CP3 specified by α, β, β′, γ as described in Result 4.1. As

a second step I show in section 5.1 that Result 4.1 holds for one special member of the

family Cα,β,β′,γ , namely for C1,0,0,1: This model agrees with the Gepner model (2)4, for

which indeed by a combination of results by Witten [33] and Aspinwall and Morrison [23]

the claim follows. The third and final step of the proof, which I explain in section 5.2, uses

the observation that the geometric interpretation of Cα,β,β′,γ in which I have already found

the desired complex structure by Lemma 4.2, has complexified Kähler structure which

is independent of α, β, β′, γ. I identify the relevant deformations of Cα,β,β′,γ induced by

varying α, β, β′, γ and show that they are compatible with keeping the complexified Kähler

structure (ωFS, VFS , BFS) which was found for (2)4 in section 5.1 constant for the entire

family.

5.1 The Gepner model (2)4

This section is devoted to a detailed study of one special member of the family Cα,β,β′,γ of

SCFTs introduced in Definition 3.10, namely the model C1,0,0,1 obtained from the toroidal

SCFT T1,0,0,1 on the standard torus A1,0,1 = R4/Z4 with vanishing B-field by the Z4-

orbifold procedure. As a first step, I rewrite this model in a form which is more familiar

to a certain class of string theorists:

Proposition 5.1 [30, Theorem 3.5]

The Z4-orbifold CFT C1,0,0,1 of Definition 3.10 agrees with the (2)4 Gepner model.

For a brief primer on Gepner models and its building blocks, the minimal models, see

appendices B and C. Specifically the models that are relevant for Proposition 5.1 are

discussed in appendix D. Proposition 5.1 was conjectured in [27] and a proof was given

in [30]. It is based on an explicit field theory calculation which in fact simplifies when one

uses the identifications discussed in appendix D: The Gepner model (2)2 agrees with the

SCFT associated to the elliptic curve R2/Z2 with complex structure given by introducing

a complex coordinate z = x1 + ix2, where x1, x2 are the standard Cartesian coordinates on

R2, and with vanishing B-field. Though this identification is well-known [78], appendix D.1

recalls the explicit field identifications. I show in appendix D.2 how these identifications

imply that the “Gepner orbifold” (D.3), which gives (2)2 ⊗ (2)2/Z4 = (2)4, is induced by

the geometric Z4-action (3.5) on the four-torus A1,0,1 = R4/Z4 which underlies the toroidal

model (2)2 ⊗ (2)2 = T1,0,0,1, showing T1,0,0,1/Z4 = (2)4.

This construction also allows to explicitly identify some of the deformations of the

model (2)4, which will become useful below. Namely, in SCFT, integrable deformations

which preserve superconformal invariance are given in terms of fields of conformal di-

mensions h = h = 1
2 and with u(1)-charges (Q,Q) such that |Q| = |Q| = 1, since the
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superpartners of these fields are the integrable (h, h) = (1, 1) marginal operators [79]. For

example, (2)2 possesses four such linearly independent fields, as can be seen from (B.3):

ψ±ψ± = Φ0
∓2,2;±2,2 ⊗ Φ0

∓2,2;±2,2, ψ±ψ∓ = Φ0
∓2,2;∓2,2 ⊗ Φ0

∓2,2;∓2,2,

where ψ±, ψ± denote the left- and the right handed Dirac fermions as in appendix D.1,

and where I have used (D.1). This is in accord with the dimension 4 of the moduli space

of SCFTs associated to elliptic curves as stated in Proposition 2.2. In T1,0,0,1 = (2)2 ⊗ (2)2,

these fields also give deformations, where only

V
(1)
± := Φ0

±2,2;±2,2 ⊗ Φ0
±2,2;±2,2 ⊗ Φ0

0,0;0,0 ⊗ Φ0
0,0;0,0,

V
(2)
± := Φ0

0,0;0,0 ⊗ Φ0
0,0;0,0 ⊗ Φ0

±2,2;±2,2 ⊗ Φ0
±2,2;±2,2

(5.1)

are invariant under the action (D.3) which yields the Z4-orbifold (2)2 ⊗ (2)2/Z4 = (2)4. In

other words, V
(1)
± and V

(2)
± are the deformations that (2)4 has in common with (2)2 ⊗ (2)2,

and we have

Proposition 5.2

The fields V
(1)
± , V

(2)
± of (5.1) give deformations of the Gepner model (2)4 = C1,0,0,1 which

in the geometric interpretation (Ω0
X , ω1, V1,0,1, B1,0,0) of Proposition 3.11 on the Z4-orbifold

X1,0,1 = ˜A1,0,1/Z4 (with A1,0,1 = R4/Λ1,0,1, Λ1,0,1 = R1Z2⊕R2Z2 as in (3.2), R1 = R2 = 1)

amount to deformations of the radii R1, R2 of the torus Aα,β,γ and of the B-field to Bα,β,β′

as in Proposition 3.11.

For any refined geometric interpretation (Ω, ω, V,B) of the four-plane

x1,0,0,1 = spanR

(
u1 = Ω̃1, u2 = Ω̃2, u3 = υ̂0

3 + υ̂3, u4 = 4υ̂0 + B̌4 + 5υ̂
)
∈ M̃K3

specifying C1,0,0,1 in MK3 as in Proposition 3.11, the following holds: If Ω gives the complex

structure of the Fermat quartic XFermat = X(f0, f0) as in (4.4), then

Ω = ΩX
1,0,0,1 = spanR

(
u3 = υ̂0

3 + υ̂3, u4 = 4υ̂0 + B̌4 + 5υ̂
)
,

f0
X := spanR

(
ω − 〈ω,B〉υ, υ0 + B +

(
V − 1

2
〈B,B〉

)
υ

)
= spanR

(
Ω̃1, Ω̃2

)
= Ω0

X ,

with υ0, υ generators of H0(X, Z) and H4(X, Z) in this geometric interpretation. Further-

more, the fields V
(1)
± , V

(2)
± of (5.1) give deformations which leave invariant the two-plane

f0
X that encodes the complexified Kähler structure of this geometric interpretation.

Proof:

The statements about the interpretation of deformations in terms of the Z4-orbifold con-

struction follow from the above discussion, because solely the deformations listed are

compatible with the Z4-action. Note that the induced deformation of the four-plane

x1,0,0,1 leaves the two-plane Ω0
X = spanR

(
Ω̃1, Ω̃2

)
invariant, as this plane is shared by

all xα,β,β′,γ according to Proposition 3.11. Moreover, by the same proposition the lattice

Q := x1,0,0,1 ∩ Heven(X, Z) has rank four and is generated by the pairwise perpendicular

lattice vectors u1, u2, u3, u4 with

〈u1, u1〉 = 2 = 〈u2, u2〉, 〈u3, u3〉 = 8 = 〈u4, u4〉.
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For the Fermat quartic XFermat = X(f0, f0) with complex structure ΩFermat ⊂ H2(X, R)

by [52] the quadratic form associated to ΩFermat∩H2(X, Z) (see Definition 4.3) is diag(8, 8).

However, the only primitive sublattice of Q with this quadratic form is the one generated by

u3, u4. It follows that for every refined geometric interpretation (Ω, ω, V,B) of C1,0,0,1 with

Ω = ΩFermat, the complex structure of the Fermat quartic, we must have ΩFermat = ΩX
1,0,0,1

as claimed and thus also f0
X = Ω0

X as claimed. Above I have already argued that the

deformations given by V
(1)
± , V

(2)
± of (5.1) leave the plane f0

X invariant, completing the

proof. ut
Note that the result of Proposition 5.2 does not imply that all refined geometric interpre-

tations of C1,0,0,1 with complex structure of the Fermat quartic agree: According to Defini-

tion 3.6, such a refined geometric interpretation is given by a decomposition x1,0,0,1 = Ω ⊥ f

into perpendicular oriented two-planes together with an appropriate choice of null vectors

υ0, υ which by Lemma 3.7 allows to read off the data (ω, V,B) from f. However, given

the decomposition x1,0,0,1 = ΩX
1,0,0,1 ⊥ f0

X , an infinity of pairs of null vectors obeying con-

ditions (1) and (2) of Definition 3.6 exists. Therefore I will not be able to show that the

refined geometric interpretation of Cα,β,β′,γ on the quartic X(f1, f2) given in Lemma 4.2

and Proposition 3.11 agrees with the one claimed to exist in Result 4.1. The proof of

Result 4.1 does not require such an identification.

Proposition 5.1 allows to study the model C1,0,0,1 = (2)4 from a different perspective,

namely as a model arising as orbifold of a certain Landau-Ginzburg model at criticality [80,

81]. This viewpoint, taken from [33], implies (see also [82, (74)])

Fact 5.3 [28, 33]

The parameter space M̃K3 of SCFTs on K3 contains a subspace of the form

O+(2, 19; R)/SO(2) × O(19) × O+(2, 1; R)/SO(2) × O(1)

of SCFTs associated to quartic K3 surfaces in CP3 with normalized Kähler class ω = ωFS,

the class of the Fubini-Study metric, and B-field B = bωFS for some b ∈ R. It is the

space of models which arise as infrared fixed points of the renormalization group flow from

linear sigma models in CP3 according to [33]. The first factor of this space accounts for the

choice of the complex structure of the quartic K3 surface, while the second factor captures

the parameters V ∈ R+ of the volume and b ∈ R of the B-field.

Fixing the complex structure to that of the Fermat quartic XFermat = X(f0, f0) of (4.4)

and identifying any two equivalent SCFTs in the resulting space, one obtains a space

MFermat ∼= O+(2, 1; Z)\O+(2, 1; R)/SO(2) × O(1) ∼= S2 − {∞}

of SCFTs associated to the Fermat quartic with normalized Kähler class ω = ωFS and

B-field BFS = bωFS, b ∈ R. It has two special points with non-trivial monodromy: There

is one point with monodromy of order 2 where the SCFT description is expected to break

down, while the second special point has monodromy of order 4 and gives the Gepner model

(2)4. The deformations of this model given by fields

Φn0
±n0,0;±n0,0 ⊗ Φn1

±n1,0;±n1,0 ⊗ Φn2
±n2,0;±n2,0 ⊗ Φn3

±n3,0;±n3,0 with ni ∈ {0, 1, 2},
3∑

i=0

ni = 4
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amount to deformations of the defining polynomial of X(f0, f0) by monomials of the form

δ xn0
0 xn1

1 xn2
2 xn3

3 , δ ∈ C.

It is not hard to translate Fact 5.3 into the language of our moduli space, i.e. to combine

the results of [33] with those of [23]:

Corollary 5.4

The Gepner model (2)4 has a refined geometric interpretation (ΩFermat, ωFS , VFS, BFS)

with ΩFermat the complex structure of the Fermat quartic X(f0, f0) ⊂ CP3 of (4.4), ωFS

the Kähler class induced by the Fubini-Study metric in CP3, VFS = 1
2 , and BFS = −1

2ωFS.

Furthermore, the deformations V
(1)
± , V

(2)
± of (5.1) give pure complex structure deformations

within the family

X(f1, f2): f1(x0, x1) + f2(x2, x3) = 0 in CP3, fk(y1, y2) = y4
1 + y4

2 + δk y2
1y

2
2, δk ∈ C

in this geometric interpretation.

Proof:

Using Definition 3.6 and Lemma 3.7 one finds that the family of SCFTs MFermat is given

by four-planes x = ΩFermat ⊥ fV,b ⊂ Heven(X, R) with fixed complex structure ΩFermat of

XFermat and complexified Kähler structure (ωFS , V,B = bωFS), V ∈ R+, b ∈ R, i.e. with

fV,b = spanR

(
ωFS − 4bυFS , υ0

FS + bωFS +
(
V − 2b2

)
υFS

)
,

where υ0
FS , υFS generate H0(X, Z) and H4(X, Z), respectively. It is convenient to intro-

duce the complex parameter

τ := b + i

√
V

2
∈ H,

and one finds that τ, τ ′ ∈ H corresponding to four-planes x = ΩFermat ⊥ fV,b and x′ =

ΩFermat ⊥ fV ′,b′ specify the same SCFT iff τ = γτ ′ for some γ ∈ Γ0(2)+, the normalizer

of Γ0(2) in PSL2(R) [50, §3]. In other words, MFermat of Fact 5.3 is given by Γ0(2)+\H ∼=
S2 − {∞}. This space indeed has two special points with non-trivial stabilizer in Γ0(2)+,

i.e. with non-trivial monodromy in MFermat. One of these points has monodromy of order

4, namely τ = −1
2 + i

2 , which according to Fact 5.3 gives the Gepner point. Hence (2)4 has

refined geometric interpretation on the Fermat quartic with complexified Kähler structure

encoded in f 1
2
,− 1

2
, amounting to V = 1

2 , B = −1
2ωFS as claimed.

The claim about the deformations corresponding to V
(1)
± , V

(2)
± of (5.1) follows directly

from Fact 5.3 together with the result of appendix A that in X(f1, f2) by appropriate

coordinate transformations the polynomials f1, f2 can be brought into the form fk(y1, y2) =

y4
1 + y4

2 + δk y2
1y

2
2 with δk ∈ C. ut

As a compatibility check also note the following: By Proposition 5.1 we can construct

the Gepner model (2)4 in terms of an orbifold of the toroidal model T1,0,0,1 which can be

carried out in two steps: With ι the “Gepner orbifold” of (D.3), T1,0,0,1/〈ι2〉 = (2̂)4 by the

– 33 –



J
H
E
P
0
3
(
2
0
0
6
)
1
0
2

discussion in appendix D.2, and then (2̂)4/〈ι〉 = (2)4. This second orbifold has an “inverse”

obtained by the action

σ̂:

4⊗

j=1

Φ
lj
mj ,sj ;mj ,sj

7−→ e
2πi
4

[(m1+m1)+(m2+m2)]
4⊗

j=1

Φ
lj
mj ,sj ;mj ,sj

(5.2)

on the fields of (2)4. Together with the identifications made in Fact 5.3 this action descends

to the automorphism σ of (4.2) which was used in Inose’s construction. In other words,

(2)4/〈σ̂〉 = (2̂)4 = (2)2 ⊗ (2)2/〈ι2〉 is indeed a lift of Inose’s construction to the SCFT level.

5.2 The proof

To complete the proof of Result 4.1 let me first take stock of what we have achieved so far.

By Corollary 5.4 the claim is true for the special SCFT C1,0,0,1 which agrees with the Gepner

model (2)4 by Proposition 5.1. By Proposition 5.2 this implies that for the four-plane

x1,0,0,1 ∈ M̃K3 specifying this model within the moduli space, x1,0,0,1 = ΩX
1,0,0,1 ⊥ f0

X with

ΩX
1,0,0,1 = ΩFermat (notations as in Propositions 3.11, 5.2, and Corollary 5.4). Moreover, the

variation of the parameters α, β, β′, γ in Cα,β,β′,γ away from (α, β, β′, γ) = (1, 0, 0, 1) leave

the two-plane f0
X invariant, xα,β,β′,γ = ΩX

α,β,β′,γ ⊥ f0
X . Finally, by Lemma 4.2 any refined

geometric interpretation of xα,β,β′,γ using ΩX
α,β,β′,γ to specify the complex structure gives

the complex structure of the quartic X(f1, f2) obtained from α, β, β′, γ as in Result 4.1.

Recall from the discussion at the end of section 3.1 that a decomposition of a four-plane

x ∈ M̃K3 into two oriented two-planes x = Ω ⊥ f with choice of ordering amounts to an

interpretation of the corresponding SCFT on K3 in terms of a generalized K3 structure.

Hence the above already shows that Cα,β,β′,γ can be interpreted in terms of generalized

K3 structures in accord with the claim of Result 4.1. However, the claim made there is

stronger in that it refers to a refined geometric interpretation rather than a generalized K3

structure. See also the end of section 3.1 for a discussion of this distinction: It remains

to show that the null vectors υ0
FS, υFS needed for the refined geometric interpretation of

C1,0,0,1 in terms of the Fermat quartic with normalized Kähler class ωFS, volume VFS = 1
2 ,

and B-field BFS = −1
2ωFS (Corollary 5.4) are compatible with interpreting ΩX

α,β,β′,γ in

xα,β,β′,γ = ΩX
α,β,β′,γ ⊥ f0

X as two-plane yielding a complex structure for all admissible

α, β, β′, γ. In other words, we need to show that ΩX
α,β,β′,γ ⊥ υ0

FS and ΩX
α,β,β′,γ ⊥ υFS for

all admissible α, β, β′, γ.

This follows by means of the identifications of deformations of C1,0,0,1 that I have given

in section 5.1: By Proposition 5.2, the fields V
(1)
± and V

(2)
± of (5.1) give the deformations of

x1,0,0,1 into the four parameter family xα,β,β′,γ . On the other hand, by Corollary 5.4 within

the refined geometric interpretation (ΩFermat = ΩX
1,0,0,1, ωFS, VFS , BFS) of C1,0,0,1 these

fields induce pure complex structure deformations of XFermat = X(f0, f0) to X(f1, f2) with

fk(y1, y2) = y4
1 +y4

2 + δky
2
1y

2
2, δk ∈ C. This amounts to υ0

FS , υFS ⊥ ΩX
α,β,β′,γ as needed. ut

The use of the results of [33] in the above proof ties this work to seminal insights from the

physics literature. However, one would hope to be able to find a proof completely within

the language of algebraic geometry instead of having to mix two viewpoints. A possible

strategy for such a proof involves a more detailed study of the model (2̂)4 (see D.2) and
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its two refined geometric interpretations induced from its two Z2-orbifold constructions:

One arising from the Kummer construction for the standard torus A1,0,1 = R4/Z4 with

vanishing B-field, (2̂)4 = T1,0,0,1/Z2 = (2)2 ⊗ (2)2/〈ι2〉 with ι as in (D.3), and the other as

Z2-orbifold CFT arising from the extension of the orbifold construction ˜X(f1, f2)/〈σ〉 to

SCFT level, (2̂)4 = (2)4/〈σ̂〉 with σ, σ̂ as in (4.2), (5.2), respectively. One should find the

appropriate lattice automorphism of Heven(X, Z) which relates these two refined geometric

interpretations of the relevant four-plane x(b2)4 ∈ M̃K3 to one another. Starting from the

Kummer construction the resulting normalized Kähler class in the geometric interpretation

on ˜X(f1, f2)/〈σ〉 needs to be characterized by its intersection numbers with all other two-

cycles in ˜X(f1, f2)/〈σ〉 (or otherwise) to show that it agrees with the class of the orbifold

limit of an Einstein metric descending from ωFS on X(f1, f2) ⊂ CP3, the class induced by

the Fubini-Study metric on CP3. The result of Proposition 4.5 was obtained as a welcome

side effect of my quest for such a proof.

6. Discussion

This work aims to provide a self-contained description of how to construct SCFTs Cα,β,β′,γ

associated to the smooth quartic K3 surfaces

X(f1, f2): f1(x0, x1) + f2(x2, x3) = 0 in CP3 (6.1)

with normalized Kähler class ωFS induced by the Fubini-Study metric on CP3, volume

V = 1
2 , and B-field B = −1

2ωFS. The construction itself is simple, since Cα,β,β′,γ turns out

to be a standard Z4-orbifold of a toroidal SCFT. I regard this as a virtue rather than a

disadvantage, since it implies that the family Cα,β,β′,γ does not only lend itself to all field

theory techniques that are linked to the algebraic description through (6.1) but also that

the underlying vertex operator algebras are completely explicitly accessible. Furthermore

C1,0,0,1 agrees with the (2)4 Gepner model, such that the family Cα,β,β′,γ can be viewed as

a deformation of that model. Altogether the four-parameter family Cα,β,β′,γ is well under

control, both from a SCFT and an algebraic point of view, and as such it is the first known

example of its kind.

My construction can be viewed as a generalization to SCFTs of a classical construction

by Inose [52] by employing a crude version of mirror symmetry. As a by-product, motivated

by discussions with M. Headrick and T. Wiseman, a characterization in terms of a Kummer

construction is obtained for the Kähler class induced by the class of the Fubini Study metric

on an orbifold of, say, the Fermat quartic. This makes the Kähler-Einstein metric in the

former class accessible to numerical approaches developed in [53]. One may hope that such

numerical approaches can be generalized to the level of SCFT to begin an analysis of as

yet unexplored SCFTs which have no orbifold description.

Rational SCFTs seem not to play a central rôle within the family Cα,β,β′,γ . While not

all theories with α, β, β′, γ ∈ Q are rational, these are the parameter values at which the

corresponding quartic hypersurfaces (6.1) are “very attractive”, i.e. they have maximal

Picard number. It would be interesting to know whether any particular intrinsic property
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of the underlying SCFTs distinguishes rational from non-rational values of α, β, β′, γ.

After all, within M̃K3 these theories are characterized by the fact that the four-plane

xα,β,β′,γ ⊂ Heven(X, R) is generated by lattice vectors in Heven(X, Z).

The proof for the main result of this work links my construction to Witten’s results

on gauged linear sigma models [33]. An independent proof would be desirable, but this

link could be of considerable use in applications: Although the relation between Landau-

Ginzburg models and SCFTs has been known for a long time [80, 81], this connection has

only rarely been put to use in SCFT. Recent exceptions to this rule are novel techniques

to construct D-branes by using matrix factorizations, where by an unpublished result of

Kontsevich topological D-branes in Landau-Ginzburg models are classified in terms of

matrix factorizations [83] and therefore are expected to translate to boundary states in

SCFT [36 – 44]. While for supersymmetric minimal models this correspondence is fully

confirmed and understood, for Gepner models a number of problems remain open. E.g. a

special class of matrix factorizations is expected to correspond to arbitrary permutation

branes [84, 39, 41, 44], but the full correspondence is not yet established. The family

Cα,β,β′,γ studied in the present work seems to provide a promising testing ground for these

methods: Its algebraic description is tailor made for a study in the language of Landau-

Ginzburg models, while its SCFT construction makes it accessible to all techniques provided

by representation theory. Moreover, since Cα,β,β′,γ is a family of deformations of the Gepner

model (2)4, such a study would surpass known results. Very recently a step in this direction

has been carried out in [85]. There the model (2)⊗ (2) is investigated which can be viewed

as a Z4-orbifold of the Gepner model (2)2; note (2)2 ⊗ (2)2/Z4 = (2)4.

While a large part of the tool-set used for the proof of my main result relies on the

particularities of SCFTs associated to K3, above all on the high amount of supersymmetry

which these models enjoy, insights into techniques like matrix factorization or the chiral

de Rham complex as briefly mentioned in the Introduction can be hoped to generalize

to higher dimensions. Indeed, all these applications intrinsically use a description of the

relevant SCFTs in terms of N = (2, 2) supersymmetry. In the geometric interpretation

of Cα,β,β′,γ this corresponds to the fact that I explicitly determine a complex structure

for the underlying K3 surfaces. From this viewpoint the family Cα,β,β′,γ is special solely

because we have several useful descriptions for it, not because its target space has complex

dimension 2, and it should be possible to take profit from these descriptions which can be

hoped to generalize to higher dimensions.
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A. Quartic representation of elliptic curves

Consider an elliptic curve in Weierstraß form (2.6). To express this curve within CP2,1,1,

factorize the right hand side of (2.6),

y2t =
3∏

i=1

(x − ξit) ⇐⇒ (ty)2 = t
3∏

i=1

(x − ξit) if t 6= 0.

Set y0 = ty and with suitable α, β, γ, δ ∈ C let t = αy1 + βy2, x = γy1 + δy2 to obtain an

equation

Ef : y2
0 = f(y1, y2) in CP2,1,1

with f a homogeneous polynomial of degree 4.

As a helpful example consider the elliptic curve with period τ = i. Its j-invariant is

well-known, j(i) = 1728, so its Weierstraß form can be taken as

y2t = x(x − t)(x + t).

Let ε denote a primitive eighth root of unity, λ ∈ C such that λ−3 = 2i, and set ty =

y0, t = λ(y1 − εy2), x = −iλ(y1 + εy2) as above. This yields

y2
0 = λ3 (y1 − εy2) i (y1 + εy2) (1 + i) (y1 + iεy2) (1 − i) (y1 − iεy2)

= y4
1 + y4

2 =: f0(y1, y2).

In general for non-degenerate elliptic curves we can assume without loss of generality that

f has the form

f(y1, y2) = y4
1 + 2κy2

1y
2
2 + y4

2, κ ∈ C.

Indeed, one first finds α, β, γ, δ above such that f(y1, y2) = ν1y
4
1+2κ′y2

1y
2
2+ν2y

4
2: Assuming

αβγδ = 1 with A := αβ, B := αδ and inserting t = αy1 + βy2, x = γy1 + δy2 directly into

(2.6) one needs to solve

0 = B2A−1 + 3A−1 − 27a
(
B−2A + 3A

)
− 216bA2B−1,

0 = B−2A−1 + 3A−1 − 27a
(
B2A + 3A

)
− 216bA2B.

The matrix with coefficients α, β, γ, δ needs to be invertible, which implies B2 6= 1. Hence

we can divide by (B − B−1), and setting C := B + B−1 the above system of equations is

equivalent to

D = 27aA2,

0 = (1 + D)C − 216bA3,

0 = (1 − D)C2 − 216bA3C + 4 (1 − D) .

This system can be solved in terms of a quartic equation for D. Having brought f to the

form ν1y
4
1 + 2κ′y2

1y
2
2 + ν2y

4
2, where non-degeneracy implies ν1, ν2 6= 0, one merely needs to

rescale the yk to obtain the desired form y4
1 + 2κy2

1y
2
2 + y4

2 .
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To determine under which circumstances two different values of κ ∈ C in f(y1, y2) =

y4
1 + 2κy2

1y2
2 + y4

2 yield the same elliptic curve first restrict to =(κ) ≥ 0 by employing

(y1, y2) 7→ (iy1, y2). For real κ one can furthermore assume κ ≥ 0. By a similar calculation

to the above one finds that κ and κ′ with non-negative imaginary parts yield the same

elliptic curve iff κ′ = κ+3
1−κ or κ = κ′+3

1−κ′ . In other words, a fundamental domain for κ

is Γ\ {z ∈ C | z ∼ −z} where Γ ⊂ PSL2(R) acts by Möbius transforms and is generated

by κ 7→ κ+3
1−κ . This transformation has order 3 and correctly identifies the three values

κ ∈ {±1,∞} for which the elliptic curve degenerates. Its unique fixed point with non-

negative imaginary part is κ = i
√

3. The circle about κ = 1 of radius 2 contains both

κ = −1 and κ = i
√

3. Hence a fundamental domain for those κ which yield non-degenerate

elliptic curves is bounded by the interval (−1, 1) on the real axis together with the two

circle arcs |κ ± 1| = 2 between the real axis and κ = i
√

3. These latter two arcs are glued

together, while on (−1, 1) we impose z ∼ −z. Summarizing one obtains (2.7), as depicted

in figure 1.

B. Minimal models

Let me recall the construction of the N = (2, 2) superconformal minimal models [86 – 89].

In fact we will only be concerned with the so-called A-series of minimal models, so by abuse

of notation I use (k) for k ∈ N to denote the coset model

SU(2)k ⊗ U(1)2
U(1)k+2, diag

at central charges

c = c =
3k

k + 2

[86, 87, 90, 91]. Following [92, 93] I use the most convenient description of the field content

of (k) in terms of a free boson ϕ and the parafermion model at level k found in [88, 94]:

Let ψl, l ∈ {1, . . . , k − 1} denote the Zk parafermion algebra, i.e.

ψl(z)ψl′(w) ∼





cl,l′(z − w)−2ll′/k (ψl+l′(w) + · · ·) if l + l′ < k,

cl,l′(z − w)−2ll′/k (ψl+l′−k(w) + · · ·) if l + l′ > k,

(z − w)−2ll′/k
(�

+ ck(z − w)2Tpf (w) + · · ·
)

if l + l′ = k,

where Tpf is the Virasoro field of the parafermion model. I denote by ξl
m,m the primary fields

of the parafermion theory, l ∈ {0, . . . , k}, m,m ∈ Z/2(k + 2)Z. In particular, ψl = ξ0
2l,0.

The primary fields Φl
m,s;m,s(z, z) = ψl

m,s(z) ⊗ ψl
m,s(z) of the minimal model (k) can then

be expressed as follows:

for l ∈ {0, . . . , k},m,m ∈ Z/2(k + 2)Z, s, s ∈ Z/4Z, l + m + s ≡ l + m + s ≡ 0mod 2 :

Φl
m,s;m,s(z) = ξl

m−s,m−se
−iβkQm,sϕ(z)−iβkQm,sϕ(z),

where βk :=

√
k + 2

k
, Qm,s :=

m

k + 2
− s

2
.

– 38 –



J
H
E
P
0
3
(
2
0
0
6
)
1
0
2

I use the same symbols Φl
m,s;m,s to label the conformal families of these primary fields.

More precisely,
[
Φl

m,s;m,s

]
denotes the representation built on the primary Φl

m,s;m,s with

respect to the bosonic subalgebra of the superconformal algebra. One finds the fusion rules

for Φl
m,s;m,s(z, z) = ψl

m,s(z)⊗ψl
m,s(z) :

[
ψl

m,s

]
×

[
ψl′

m′,s′

]
=

min (l+l′,2k−l−l′)∑

el=|l−l′|
el≡l+l′(2)

[
ψ

el
m+m′,s+s′

]
,

(B.1)

which enjoy the following Zk+2 symmetry:

Φl
m,s;m,s(z) 7−→ e

2πi
2(k+2)

(m+m) · Φl
m,s;m,s(z). (B.2)

The left-handed superconformal algebra is generated by

j(z) =
i

βk
∂ϕ(z), G+(z) =

1

βk
ψ1(z)eiβkϕ(z), G−(z) =

1

βk
ψk−1(z)e−iβkϕ(z),

and analogously on the right hand side, i.e. G+ and G− belong to the same conformal

family
[
Φ0

0,2;0,0

]
, where it should be kept in mind that Φ0

0,2;0,0 is primary only with respect

to the bosonic subalgebra of the superconformal algebra, as mentioned above. Moreover,

up to shifts by even integers, Qm,s is the charge of Φl
m,s;m,s with respect to the u(1) current

j of the superconformal algebra. All charges Q of primaries Φl
m,s;m,s obey |Q| ≤ 1. One

has

Φl
m,s;m,s = Φk−l

m+k+2,s+2;m+k+2,s+2,

and moreover,

when |m − s| ≤ l : hl
m,s :=

l(l + 2) − m2

4(k + 2)
+

s2

8

gives the conformal dimensions hl
m,s, hl

m,s of Φl
m,s;m,s. The above formula holds in general

up to shifts by integers. If neither Φl
m,s;m,s nor Φk−l

m+k+2,s+2;m+k+2,s+2 lie in the regime where

the formula holds precisely, then one uses it for the representative with m − s = l − 2, or,

if this does not exist, for the one with m − s = l + 2, and adds 1 to the result [95].

As mentioned above, (k) denotes the A-model at level k, i.e. this theory has primaries

Φl
m,s;m,s, where s ≡ s mod2. Fields with even s live in the Neveu-Schwarz sector, while

fields with odd s live in the Ramond sector. Moreover, fields with s − s ≡ 0mod 4 are

bosonic, while those with s−s ≡ 2mod 4 are fermionic. Equivalently and more conveniently,

a field is bosonic iff its left and right handed charges differ by an even integer. In particular,

Φl1
m1,s1;m1,s1

◦ Φl2
m2,s2;m2,s2

= (−1)
1
4
(s1−s1)(s2−s2)Φl2

m2,s2;m2,s2
◦ Φl1

m1,s1;m1,s1
.

For example, at level k = 2 one gets the following values for the conformal dimensions
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and charges (hl
m,s, Qm,s) of the primary bosonic fields in the Neveu-Schwarz sector:

\l 0, 0, 1, 1, 2, 2,

m\ s = 0 s = 2 s = 0 s = 2 s = 0 s = 2

−3

(
5

8
,−3

4

) (
1

8
,
1

4

)

−2

(
3

4
,−1

2

) (
1

4
,
1

2

) (
1

4
,−1

2

) (
3

4
,
1

2

)

−1

(
1

8
,−1

4

) (
5

8
,
3

4

)

0 (0, 0)

(
3

2
,±1

) (
1

2
, 0

)
(1,±1)

1

(
1

8
,
1

4

) (
5

8
,−3

4

)

2

(
3

4
,
1

2

) (
1

4
,−1

2

) (
1

4
,
1

2

) (
3

4
,−1

2

)

3

(
5

8
,
3

4

) (
1

8
,−1

4

)

4 (1,±1)

(
1

2
, 0

) (
3

2
,±1

)
(0, 0)

(B.3)

The character of the conformal family Φl
m,s;m,s is given by

X l
m,s;m,s(τ

′, z) = χl
m,s(τ

′, z) · χl
m,s(τ

′, z),

χl
m,s(τ

′, z) =
k∑

j=1

cl
4j+s−m(τ ′)Θ2m−(k+2)(4j+s),2k(k+2)

(
τ ′,

z

k + 2

)
, (B.4)

with τ ′ ∈ H, z ∈ C, and where cl
j , l ∈ {0, . . . , k}, j ∈ Z/2kZ are the level k string functions

of SU(2)k, and Θa,b, a ∈ Z/2bZ denote classical theta functions of level b ∈ N [29, 96, 89].

All minimal models are invariant under simultaneous left and right handed spectral

flow, where the simple current Φ0
1,1;0,0 is the operator which generates the spectral flow on

the left. Hence the Neveu-Schwarz part of the partition function is given by

ZNS(τ ′, z) =
1

2

∑

l=0,...,k
m=−k−1,...,k+2,

l+m≡0(2)

(
χl,0

m (τ ′, z) + χl,2
m (τ ′, z)

) (
χl,0

m (τ ′, z) + χl,2
m (τ ′, z)

)
,

while the partition functions for the remaining sectors can be obtained from ZNS by means

of spectral flow.
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C. Gepner models

In the main body of this paper I study SCFTs which can be viewed as internal theories

of type IIA string theories. Gepner models [28, 29, 97] are heterotic string theories, which

are obtained from certain type IIA models by a trick called heterosis. However, by abuse

of terminology I instead call the internal parts of these type IIA theories Gepner models.

To construct these models one first forms the fermionic tensor product of a number of

N = (2, 2) minimal models (k1), . . . , (kr) as discussed in appendix B, i.e. the NS and the R

sectors are tensorized separately to obtain (k1) ⊗ · · · ⊗ (kr). For the construction to work

one needs to ensure that the total central charge of this model is a multiple of 3,

c = c =

r∑

i=1

3ki

ki + 2
= 3D, D ∈ N.

Our model (k1) ⊗ · · · ⊗ (kr) enjoys a cyclic symmetry ZM induced by (B.2) with M =

lcm{ki + 2, i = 1, . . . , r}. The symmetry is generated by

ζM :

r⊗

j=1

Φ
lj
mj ,sj;mj ,sj

7−→ e
2πi
6

(cs1)




r∏

j=1

e
2πi

2(kj+2)
(mj+mj)




r⊗

j=1

Φ
lj
mj ,sj;mj ,sj

. (C.1)

The Gepner model (k1) · · · (kr) is the orbifold of (k1) ⊗ · · · ⊗ (kr) by this symmetry. For

calculations it is useful to note that the ZM invariant part of (k1) ⊗ · · · ⊗ (kr) is given by

those NS states with integral left and right handed charges and those R states with integral

(half integral) left and right handed charges if D is even (odd). Moreover, the operator of

two-fold left handed spectral flow,

U :=

r⊗

j=1

Φ0
2,2;0,0,

in this orbifold maps the sector twisted by ζm
M to the one twisted by ζm+1

M . In other words,

(k1) · · · (kr) is obtained from (k1) ⊗ · · · ⊗ (kr) by projecting onto those states with the

correct charges and then generating all remaining states by repeated action of the two-fold

left handed spectral flow U . This process is also known as GSO projection or as Gepner’s

β method. Note that U has u(1) charge (−D), so that our condition D ∈ N ensures that all

u(1) charges in a Gepner model are integral in the NS sector and integral or half integral

in the R sector. Moreover, (B.1) shows that U is a simple current,

[U ] ×




r⊗

j=1

Φ
lj
mj ,sj ;mj ,sj


 =




r⊗

j=1

Φ
lj
mj+2,sj+2;mj+2,sj+2


 . (C.2)

Note that the bosonic fields in a Gepner model are precisely those fields whose left and

right handed charges differ by an even integer.
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The Gepner model (k1) · · · (kr) enjoys many symmetries, in particular phase symme-

tries inherited from (B.2),

for aj ∈ Z, [a1, . . . , ar]:

r⊗

j=1

Φ
lj
mj ,sj ;mj ,sj

(C.3)

7−→ e
2πi
6

(cs1)




r∏

j=1

e
2πi

2(kj+2)
aj(mj+mj)




r⊗

j=1

Φ
lj
mj ,sj ;mj ,sj

.

As an example, to calculate the partition function of the Gepner model (2)2 one uses the

characters as obtained from (B.4), which with y = e2πiz yield

(χ0
0,0 + χ0

0,2)(τ
′, z) =

1

2η(τ ′)

(√
ϑ3(τ ′, 0)

η(τ ′)
ϑ3(2τ

′, z) +

√
ϑ4(τ ′, 0)

η(τ ′)
ϑ4(2τ

′, z)

)
,

(χ0
−2,0 + χ0

−2,2)(τ
′, z) =

1

2η(τ ′)

(√
ϑ3(τ ′, 0)

η(τ ′)
ϑ2(2τ

′, z) +

√
ϑ4(τ ′, 0)

η(τ ′)
iϑ1(2τ

′, z)

)
,

(χ0
4,0 + χ0

4,2)(τ
′, z) =

1

2η(τ ′)

(√
ϑ3(τ ′, 0)

η(τ ′)
ϑ3(2τ

′, z) −
√

ϑ4(τ ′, 0)

η(τ ′)
ϑ4(2τ

′, z)

)
,

(χ0
2,0 + χ0

2,2)(τ
′, z) =

1

2η(τ ′)

(√
ϑ3(τ ′, 0)

η(τ ′)
ϑ2(2τ

′, z) −
√

ϑ4(τ ′, 0)

η(τ ′)
iϑ1(2τ

′, z)

)
,

(χ1
1,0 + χ1

1,2)(τ
′, z) =

q
1
16 y

1
4

2η(τ ′)

√
ϑ2(τ ′, 0)

η(τ ′)
ϑ3

(
2τ ′, z +

τ ′

2

)
,

(χ1
3,0 + χ1

3,2)(τ
′, z) =

q
1
16 y

1
4

2η(τ ′)

√
ϑ2(τ ′, 0)

η(τ ′)
ϑ2

(
2τ ′, z +

τ ′

2

)
.

For the partition function of (2)2 with some patience from this one obtains

Z
(2)2

NS (τ ′, z) =
1

2

[∣∣∣∣
ϑ2(τ

′, 0)

η(τ ′)

∣∣∣∣
4

+

∣∣∣∣
ϑ3(τ

′, 0)

η(τ ′)

∣∣∣∣
4

+

∣∣∣∣
ϑ4(τ

′, 0)

η(τ ′)

∣∣∣∣
4
] ∣∣∣∣

ϑ3(τ
′, z)

η(τ ′)

∣∣∣∣
2

. (C.4)

D. The Gepner models (2)2, (2)4, and (2̂)4

D.1 The Gepner model (2)2

The partition function (C.4) of (2)2 has the form (2.4) of the partition function of a toroidal

SCFT. Indeed, every N = (2, 2) SCFT at central charges c = c = 3D with D ∈ N which is

invariant under spectral flow and only has integral u(1) charges in the NS sector with respect

to the u(1) currents of the left and right handed superconformal algebras is expected to
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have a non-linear sigma model description on a Calabi-Yau manifold of complex dimension

D. Moreover, if for the Gepner model (k1) · · · (kr) one has r ≤ D + 2, then this model is

expected to have a non-linear sigma model realization on the Calabi-Yau hypersurface

z2+k1
1 + · · · + z

2+kD+2

D+2 = 0 in CP M
2+k1

,..., M
2+kD+2

,

where we set kr+1 = · · · = kD+2 := 0 and M := lcm{2 + ki, , i = 1, . . . ,D + 2} [28]. This

claim has been considerably substantiated in [33], though here we will not go into details

of its precise meaning in the presence of quantum corrections. For small D, D ∈ {1, 2},
however, quantum corrections are not expected in the description of the relevant moduli

spaces, so that this claim can be made much more precise. Indeed, the Definitions 2.1

and 3.3 together with the properties of Gepner models discussed in appendix C ensure

that these models are associated to elliptic curves if D = 1 or a real four-torus or K3

surface if D = 2. Specifically for the Gepner model (2)2 we hence expect a geometric

interpretation on the elliptic curve

y2
0 = y4

1 + y4
2 in CP2,1,1,

i.e. on an elliptic curve with modulus τ = i by appendix A. In fact, (2)2 agrees with the

toroidal SCFT at central charges c = c = 3 which is specified by the two moduli τ = ρ = i.

This claim is well established in the literature [78]. However, since I will need the explicit

identifications of fields in these two theories, let me sketch the proof.8

We wish to identify two N = (2, 2) SCFTs at central charges c = c = 3, both of which

are invariant under spectral flow and contain only fields with integral u(1) charges in their

NS sectors. Moreover, one checks that for τ = ρ = i the partition function of the toroidal

theory, which can be obtained from (2.4), agrees with the one constructed for (2)2 in (C.4).

It remains to be shown that (2)2 decomposes into the tensor product of the fermionic

theory at c = c = 1 describing a Dirac fermion, and a bosonic theory at c = c = 2 with two

further u(1) currents on each side, such that the relevant charge lattice is Γi,i as given in

(2.5). To this end, one starts by using (B.3) to determine all fermionic holomorphic fields

of (2)2 with conformal weights (1
2 , 0). There are only two such linearly independent fields,

realized by the operators of two-fold left-handed spectral flows. Hence taking u(1) charges

into account we readily identify

ψ+ = Φ0
−2,2;0,0 ⊗ Φ0

−2,2;0,0, ψ− = Φ0
2,2;0,0 ⊗ Φ0

2,2;0,0. (D.1)

Recall that these fields are simple currents, and by (C.2) they indeed realize the OPE of a

Dirac fermion. Moreover, since the analogous simple currents exist on the right hand side,

(2)2 splits into a tensor product of a bosonic theory B at central charges c = c = 2 with

the fermionic theory which describes the Dirac fermion. The superpartners of the ψ± give

two further Hermitean conjugate u(1) currents on each side of the theory B,

j± = Φ0
∓2,0;0,0 ⊗ Φ0

∓2,2;0,0 − Φ0
∓2,2;0,0 ⊗ Φ0

∓2,0;0,0, (D.2)

8The proof I gave together with W. Nahm in [30, Theorem 3.2] unfortunately contains typos and a gap,

which I also wish to correct here. As we shall see, these mistakes do not influence any other results in that

publication.
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such that the real and imaginary parts of
√

2j± obey (2.2), and similarly on the right-hand

side. Hence this theory indeed is a bosonic toroidal CFT, and it remains to determine its

charge lattice Γτ,ρ. The primary fields of B are obtained as follows: Each orbit under the

action of ψ+ and its right handed analog on the NS sector of (2)2 contributes one such

primary field, namely the one with lowest conformal weights in the orbit. Using (B.3)

we therefore find that the following fields contribute as left or right hand components of

primary fields in B, with notations as in (B.1):

ψ0
0,0 ⊗ ψ0

0,0, ψ0
4,2 ⊗ ψ0

0,0, ψ0
0,0 ⊗ ψ0

4,2, ψ0
4,2 ⊗ ψ0

4,2,

ψ0
2,0 ⊗ ψ0

2,2, ψ0
2,2 ⊗ ψ0

2,0, ψ0
−2,0 ⊗ ψ0

−2,2, ψ0
−2,2 ⊗ ψ0

−2,0,

ψ1
1,0 ⊗ ψ1

−1,0, ψ1
−1,0 ⊗ ψ1

1,0, ψ1
3,2 ⊗ ψ1

−3,2, ψ1
−3,2 ⊗ ψ1

3,2,

ψ1
1,0 ⊗ ψ1

3,2, ψ1
−1,0 ⊗ ψ1

−3,2, ψ1
3,2 ⊗ ψ1

1,0, ψ1
−3,2 ⊗ ψ1

−1,0.

Let us denote the u(1) currents of the two minimal model factors of (2)2 by j = i√
2
∂ϕ, j′ =

i√
2
∂ϕ′, respectively, such that j + j′ = J = i :ψ−ψ+:. Then apart from the u(1)2 ⊕ u(1)2

current algebra generated by j±, ± the theory B allows a further four-dimensional space

of holomorphic primaries at weight (1, 0), generated by

j − j′, Φ0
4,2;0,0 ⊗ Φ0

4,2;0,0,

Φ0
2,0;0,0 ⊗ Φ0

2,2;0,0 + Φ0
2,2;0,0 ⊗ Φ0

2,0;0,0, Φ0
−2,0;0,0 ⊗ Φ0

−2,2;0,0 + Φ0
−2,2;0,0 ⊗ Φ0

−2,0;0,0,

and similarly for antiholomorphic fields of weights (0, 1). Hence without loss of generality

we can assume that the lattice Λ generated by λ1, λ2 in (2.5) contains vectors e1 =
(1
0

)

and e2 =
(
a
b

)
with a2 + b2 = 1.

On the other hand, using (B.1) one finds that the eight primaries

Φ1
1,0;1,0 ⊗ Φ1

−1,0;−1,0, Φ1
−1,0;−1,0 ⊗ Φ1

1,0;1,0, Φ1
1,0;−3,2 ⊗ Φ1

−1,0;3,2, Φ1
−1,0;3,2 ⊗ Φ1

1,0;−3,2,

Φ1
1,0;−1,0 ⊗ Φ1

−1,0;−3,2, Φ1
−1,0;1,0 ⊗ Φ1

1,0;3,2, Φ1
1,0;3,2 ⊗ Φ1

−1,0;1,0, Φ1
−1,0;−3,2 ⊗ Φ1

1,0;−1,0

in B together with the Virasoro fields generate all fields in B by means of the OPE. All the

eight primaries in the above list have the minimal non-zero conformal weights which occur

in B, h = h = 1
4 . Denoting by Λ∗ the lattice generated by λ∗

1, λ∗
2 in (2.5), this means that

the lattice Γτ,ρ is generated by four vectors of the form

1√
2
(λ−Bλ,−λ−Bλ), 1√

2
(λ̃−Bλ̃,−λ̃−Bλ̃), 1√

2
(λ∗, λ∗), 1√

2
(λ̃∗, λ̃∗), λ, λ̃ ∈ Λ, λ∗, λ̃∗ ∈ Λ∗,

where λ∗ and λ̃∗ are generators of the lattice Λ∗ with length 1. Together with e1, e2 ∈ Λ,

and since Λ∗ is indeed the dual lattice of Λ when we identify R2 ∼= (R2)∗ by means of

the standard Euclidean scalar product, this implies that without loss of generality λ∗ =(1
0

)
, λ̃∗ =

(0
1

)
and λ∗ = e1, λ̃∗ = e2. Hence Λ = Λ∗ = Z2, meaning τ = ρ = i as claimed.

D.2 The Gepner models (2)4 and (2̂)4

By the above the fermionic tensor product T1,0,0,1 := (2)2 ⊗ (2)2 of two Gepner models

(2)2 is the toroidal SCFT on a complex two-torus A1,0,1 = C2/∼ which is the product of
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two elliptic curves with moduli τ = ρ = i each. On A1,0,1 and with respect to standard

coordinates (z1, z2) of C2 we have zk ∼ zk +1 ∼ zk + i, and the theory T1,0,0,1 has vanishing

B-field. In the following we denote the left handed Dirac fermions of the two tensor factors

(2)2 of T1,0,0,1 by ψ1
±, ψ2

±, respectively, and their superpartners by j1
±, j2

±.

The theory T1,0,0,1 enjoys a natural symmetry of order 4, which is induced by the

geometric symmetry (z1, z2) 7→ (iz1,−iz2) of A1,0,1, or more precisely by

(ψ1
±, ψ2

±) 7−→ (±iψ1
±,∓iψ2

±), (j1
±, j2

±) 7−→ (±ij1
±,∓ij2

±).

Given the identifications (D.1) and (D.2) this means that in Gepner language on (2)2⊗(2)2

we are using the symmetry

ι:
4⊗

j=1

Φ
lj
mj ,sj ;mj ,sj

7−→ e
2πi
8

[(m1−m1)−(m3−m3)]
4⊗

j=1

Φ
lj
mj ,sj ;mj ,sj

. (D.3)

Now recall our description of Gepner models as orbifolds in terms of the GSO projection by

ζM in (C.1), where in our case M = 4. A field Φ(1)⊗Φ(2) of (2)2⊗ (2)2, with Φ(l) belonging

to the sector of the lth tensor factor (2)2 twisted by ζbl

4 , is invariant under the above

symmetry iff b1 = b2. Again by our description of Gepner models this implies directly that

the above orbifold, which was induced by the standard geometric Z4-symmetry of T1,0,0,1,

gives the Gepner model (2)4. This was already shown in [30, Theorem 3.5]. Moreover, we

also obtain directly the result [30, Theorem 3.3] that the standard geometric Z2-orbifold of

T1,0,0,1, i.e. the orbifold by ι2 above, yields the model (2̂)4 which is obtained from (2)4 by

means of the Z2-orbifold by [2, 2, 0, 0] with notations as in (C.3). In [30], the proof that (2̂)4

agrees with the standard Z2-orbifold of T1,0,0,1 was given independently of the identification

of (2)2. Note that the above corrected field identification for (2)2 now directly induces the

precise identification [30, (3.8)] for (2̂)4.
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[57] G. Höhn, Komplexe elliptische Geschlechter und S1 äquivalente Kobordismustheorie, Diploma

thesis, Rheinische Friedrich-Wilhelms Universität, Bonn, und Valendar, 1991

http://baby.mathematik.uni-freiburg.de/papers/diplom.ps.gz.

[58] K. Wendland, Moduli spaces of unitary conformal field theories. PhD thesis, University of

Bonn 2000.

[59] S. Cecotti, N = 2 supergravity, type-IIB superstrings and algebraic geometry, Commun.

Math. Phys. 131 (1990) 517.

[60] V. Kulikov, Surjectivity of the period mapping for K3 surfaces, Uspehi Mat. Nauk 32 (1977),

no. 4(196), 257.

[61] A. Todorov, Applications of the Kähler-Einstein-Calabi-Yau metric to moduli of K3 surfaces,

Invent. Math. 61 (1980) 251.

[62] E. Looijenga, A Torelli theorem for Kähler-Einstein K3 surfaces, vol. 894 of Lecture Notes in

Math., pp. 107-112, Springer, Berlin, 1981.

[63] Y. Siu, A simple proof of the surjectivity of the period map of K3 surfaces, Manuscripta

Math. 35 (1981), no. 3, 311.

[64] Y. Namikawa, Surjectivity of period map for K3 surfaces, in Classification of algebraic and

analytic manifolds (Katata, 1982), vol. 39 of Progr. Math., pp. 379-397, Birkhäuser Boston,
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